bottom-up notes
♦️

Advanced Bottom-Up Engineering of Living Architectures

🗃️
参考文献
📊
图表
📋
名词解释和笔记
Bottom-up tissue engineering is a promising approach for designing modular biomimetic structures that aim to recapitulate the intricate hierarchy and biofunctionality of native human tissues. In recent years, this field has seen exciting progress driven by an increasing knowledge of biological systems and their rational deconstruction into key core components. Relevant advances in the bottom-up assembly of unitary living blocks toward the creation of higher order bioarchitectures based on multicellular-rich structures or multicomponent cell–biomaterial synergies are described. An up-to-date critical overview of long-term existing and rapidly emerging technologies for integrative bottom-up tissue engineering is provided, including discussion of their practical challenges and required advances. It is envisioned that a combination of cell–biomaterial constructs with bioadaptable features and biospecific 3D designs will contribute to the development of more robust and functional humanized tissues for therapies and disease models, as well as tools for fundamental biological studies.
自下而上的组织工程是设计模块化仿生结构的一种很有前途的方法,旨在概括天然人类组织复杂的层次结构和生物功能。近年来,这一领域取得了令人振奋的进展,这是由于人们对生物系统的了解不断增加,并将其合理地分解为关键的核心组成部分。描述了基于多细胞丰富结构或多组分细胞-生物材料协同作用的高阶生物结构的自下而上组装单一生物块的相关进展。对自下而上一体化组织工程的长期存在和迅速崛起的技术进行了最新的关键概述,包括他们的实际挑战和所需的进展的讨论。据设想,具有生物适应性特征的细胞-生物材料结构和生物特异性3D设计的组合将有助于开发更强大和更具功能的人性化组织,用于治疗和疾病模型,以及基础生物学研究的工具。

1. Introduction

Tissue engineering and regenerative medicine (TERM) strategies have been for long regarded as the next-generation medical treatments owing to their potential to repair, improve, or replace tissues/organs that exhibit defective functions resulting from trauma, chronic diseases or ageing.[1,2] Over the past decades, this field has witnessed a tremendous evolution motivated by an accumulating body of knowledge on human tissues development, homeostasis regulation, and inflammation/regeneration processes.[3–5] Adding to this, such fundaments have also been key for rapidly advancing the fabrication of complex microphysiological systems using well-designed bioinstructive materials that aim to recapitulate human disease hallmarks in vitro.
长期以来,组织工程和再生医学(TERM)策略一直被认为是下一代医疗疗法,因为它们具有修复、改善或替代因创伤、慢性病或衰老而表现出缺陷功能的组织/器官的潜力。[1,2]在过去的几十年里,这一领域经历了巨大的发展,其动力来自于人体组织发育、体内平衡调节和炎症/再生过程的积累。[3-5]除此之外,这些基础也是快速推进使用精心设计的生物指导材料制造复杂微生理系统的关键,这些材料旨在在体外重现人类疾病的特征。
notion image
💡
生物指导材料基础:组织工程和再生医学(TERM)策略
This deepened understanding of tissue-specific microenvironments and recognition of their fundamental modular nature has revealed that different cell populations and their supportive extracellular matrix (ECM) represent the core effectors in human biological systems and are essential for life.[7,8] During the processes of organogenesis and morphogenesis, such elements self-orchestrate tissue development from a nano- to macrostructural organization in a dynamic mode involving both cell–cell crosstalk (e.g., via soluble mediators, vesicles, etc.) and dynamic cell–matrix biochemical and biophysical interactions. This highly bioregulated interplay remains active throughout our lifetime with constant ECM synthesis, biochemical modification, and remodeling in response to biological and environmental factors, as well as to tissue injury.[9] Loss-of-function at both cellular and ECM level dysregulates tissue homeostasis and prompts the onset of numerous life- threatening pathologies.
对组织特异性微环境的深入了解和对其基本模块性质的认识表明,不同的细胞群及其支持性细胞外基质(ECM)代表了人类生物系统中的核心效应物,对生命至关重要。在器官发生和形态发生过程中,这些分子以一种涉及细胞-细胞串扰(例如,通过可溶性介质、囊泡等)以及动态的细胞-基质生化和生物物理相互作用的动态模式,自我协调组织从纳米结构到宏观结构的发展。这种高度生物调节的相互作用在我们的一生中始终保持活跃,不断进行 ECM 合成、生化修饰和重塑,以响应生物和环境因素以及组织损伤。[9]细胞和ECM水平的功能丧失会扰乱组织的动态平衡,并促使许多威胁生命的病理的发生
both cell–cell crosstalk (e.g., via soluble mediators, vesicles
notion image
  • 高度生物调节的相互作用:细胞-细胞串扰、动态的细胞-基质生化和生物物理相互作用。
  • 不断进行 ECM 合成、生化修饰和重塑,以响应生物和环境因素以及组织损伤
💡
简述细胞、ECM和生化物理环境的正常生理活动对生物系统内环境稳态是必不可少的。
Recreating these building blocks and their intricately controlled crosstalk is essential when designing tissue engineered platforms that aim to repair/substitute the complex 3D architecture of tissue-specific microenvironments and their biological functions.[10] Despite significant advances, the inclusion of key biocomponents in ex vivo engineered constructs and their arrangement into structurally ordered and physiologically functional microtissues remains a demanding challenge.[11
在设计旨在修复/替代具有组织特定微环境及其生物功能的复杂3D结构的组织工程平台时,重建这些构件及其复杂控制的串扰是必不可少的。[10]尽管取得了重大进展,但将关键生物成分包括在体外工程构造中并将其排列成结构有序且具有生理功能的微组织仍然是一个艰巨的挑战。
💡
3D结构的组织工程平台:具有特定微环境和生物功能,当需要进行修复或替代时,要进行构件和细胞串扰的的重建. 建造层次:关键生物成分加入(一级结构)— structurally ordered(产生特定结构)—physiologically functional(功能:结构决定功能,三级结构即3D结构决定功能结构(有序)-功能(完整)-微环境(串扰等)(环境中的各种可溶信号、生长因子、营养运输通讯(与其他细胞或ECM)支持保护运动等等)
Aiming to recapitulate such components, conventional tissue engineering strategies have explored “top-down ” approaches, involving cell seeding in supporting porous 3D scaffolds aiming to mimic the native ECM physiochemical and biomechanical cues.[12,13] In top-down tissue engineering, cells are expected to attach/proliferate, and ultimately completely populate a prefabricated 3D biodegradable scaffold, while simultaneously depositing de novo formed ECM along time. Up-to-date, numerous scaffold types have been engineered to better recapitulate tissues microarchitecture, physiology, and ECM soft/stiff spatiotemporal biomechanical rearrangements.[14] The latter often encompasses the inclusion of mechanical stimulation and/or biomolecules (e.g., growth factors, cytokines, etc.) for tailoring biomaterials to better recapitulate in vivo tissue microenvironments biomolecular signaling and mechanobiology.[15,16] However, cells immobilization in preformed ECM-mimetic supporting scaffolds is highly challenging, often resulting in low cell seeding density and heterogeneous spatial distribution.[17] Despite recent progress in biocompatible scaffolds fabrication techniques (e.g., 3D printing, two-photon polymerization, lithography, etc.) or on the use of bioderived decellularized matrix (dECM) tissuespecific templates, top-down scaffold-based approaches generally fail to mimic the unit-repetitive modular design found in native human tissues (i.e., nephrons, lobules, islets, etc.).[18]
为了概括这些成分,传统的组织工程策略已经探索了“自上而下”的方法,包括细胞种植,以支持旨在模拟天然ECM理化和生物力学线索的多孔3D支架。[12,13]在自上而下的组织工程中,细胞被期望附着/增殖,并最终完全填充到预制的3D可生物降解支架中,同时随着时间的推移,从头沉积形成细胞外基质。到目前为止,许多支架类型已经被设计成更好地再现组织微结构、生理学和ECM软/硬时空生物力学重排。[14]后者通常包括纳入机械刺激和/或生物分子(如生长因子、细胞因子等),以定制生物材料,更好地再现体内组织微环境生物分子信号和机械生物学。[15,16]然而,在预制的模拟ECM的支持支架中固定细胞是非常具有挑战性的,通常导致细胞种植密度低和空间分布不均。[17]尽管最近在生物相容性支架制造技术(例如,3D 打印、双光子聚合、光刻等)或使用生物衍生脱细胞基质(dECM)组织特异性模板方面取得了进展,但基于自上而下支架的方法通常无法模拟在天然人体组织(即肾单位、小叶、胰岛等)中发现的单元重复模块化设计。
💡
组织工程策略中自上而下方法:如细胞种植,建立多孔3D支架—模拟天然ECM理化和生物力学线索,可生物降解
细胞附着/增殖在支架上,并填满支架,同时生成ECM 支架设计方向:更好地再现组织微结构、生理学和ECM软/硬时空生物力学重排(其中ECM软/硬时空生物力学重排涉及机械刺激和/或生物分子,更好地再现体内组织微环境生物分子信号和机械生物学)
支架技术进步:生物相容性支架制造技术(例如,3D 打印、双光子聚合、光刻等)或使用生物衍生脱细胞基质(dECM)组织特异性模板
挑战:1.预制的模拟ECM的支持支架中固定细胞,low cell seeding density heterogeneous spatial distribution(细胞种植密度低和空间分布不均) 2.😱自上而下支架的方法通常无法模拟在天然人体组织(即肾单位、小叶、胰岛等)中发现的单元重复模块化设计
These limitations and the accumulating knowledge of human developmental biology has supported bioinspired bottom-up approaches in the form of self-assembling multicellular modules and/or cell–ECM mimetic biomaterial constructs.
这些限制和人类发育生物学知识的积累支持了自下而上的生物启发方法,其形式是自组装的多细胞模块和/或细胞-ECM模拟生物材料构造。
💡
自下而上策略产生背景:应对自上而下限制以及人类生物学发育知识积累 形式:自组装的多细胞模块和/或细胞-ECM模拟生物材料构造
Scaffold-free cell-rich structures and scaffold-based cell– biomaterial bottom-up tissue engineering strategies are more suitable for replicating the natural intricacies and modularity of human tissues/organs.[19] These building blocks can then be combined into multiscale microtissues in a hierarchic and programmed assembly mode with a biospecific design. This is critical since organ-like microarchitectures are needed not only to replicate living structures functionality, but also to identify key parameters and their roles in determining engineered tissues function. Advancing biomimetic designs in this direction is essential for accelerating regenerative medicine approaches, but also in the context of developing preclinical drug screening models. Also, it is now recognized that hierarchical tissue organization naturally limits the accumulation of somatic mutations.[2021] Thus, bottom-up assembly of hierarchical constructs might also contribute to guide the differentiation of naive stem cells upon implantation and reduce the possible risks of cell-based therapies. From a bioengineering perspective, it is more valuable and intuitive to construct a repertoire of selected biofunctional cell-rich modules rather than immediately attempting to mimic the full complexity of natural tissues. When contemplating clinical translation, optimizing biofunctionality while minimizing complexity is essential.[22
无支架的富含细胞结构和基于支架的细胞-生物材料自下而上的组织工程策略更适合复制人体组织/器官的自然复杂性和模块化。 [19]然后可以将这些构建块以具有生物特异性设计的分级和程序组装模式组合成多尺度微组织。这是至关重要的,因为不仅需要类似器官的微架构复制活体结构的功能,而且还需要确定关键参数及其在确定工程组织功能中的作用。朝着这个方向推进仿生设计对于加速再生医学方法至关重要,而且在开发临床前药物筛选模型的背景下也是如此。另外,现在人们认识到,分层的组织结构自然地限制了体细胞突变的积累[20,21] 。因此,分层结构的自下而上组装也可能有助于指导幼稚干细胞在植入时的分化,并降低基于细胞的疗法的可能风险。从生物工程的角度来看,构建一系列选定的富含生物功能的细胞模块比立即尝试模仿天然组织的全部复杂性更有价值和直观。在考虑临床转化时,优化生物功能同时尽量减少复杂性是必不可少的
💡
自下而上的组织工程策略:无支架的富含细胞结构和基于支架的细胞-生物材料(分别对应上段的自组装的多细胞模块和/或细胞-ECM模拟生物材料构造) 包装方法:化学或基因编程控制(chemically or genetically controlled programming),使微组织设计更好控制微结构和生物学特征。 最终效果:活体微组织有望展示器官特有望展示器官特定的生物功能、成功的宿主整合以及随时间推移的微环境生物响应。 优点:可更加复杂和模块化,这些模块再进一步组合成多尺度微组织(以具有生物特异性设计特点的分级和程序组装模式进行组装), 在组装过程中: 1.组装形成的类器官微架构—复制活体结构与功能 2.确定组装关键参数 应用:再生医学、临床前药物筛选模型 分层的组织结构(分层组装)优势:限制了体细胞突变的积累、助于指导幼稚干细胞在植入时的分化,并降低基于细胞的疗法的可能风险 总结:构建一系列选定的富含生物功能的细胞模块比立即尝试模仿天然组织的全部复杂性更有价值和直观。(构建模块比一步到位更加易操作和调控) 🤗同时,尽可能减少复杂,优化功能(精简强大)
Bottom-up tissue engineering provides a unique design flexibility, allowing to freely combine each building block to carry out distinct tasks in multiple layouts with tissue-biomimetic features, and only then assessing the final biofunctionality of multiscale-assembled microtissues. The cellular rich building blocks can be engineered via different approaches including self- or guided/programmed cell assembly (Figure 1) that enable user-controlled spatial distribution of different cell populations.
自下而上的组织工程提供了独特的设计灵活性,允许自由组合每个构建块以在具有组织仿生特征的多个布局中执行不同的任务,然后才评估多尺度组装的微组织的最终生物功能。细胞丰富的构建块可以通过不同的方法进行工程设计,包括自我或引导/程序化的细胞组装(图 1),使用户能够控制不同细胞群的空间分布。
💡
说明自下而上另一个优势: 🤗设计灵活性和用户依从性。设计灵活—允许构建块自由组合,从而在多布局中执行不同任务,并最终进行功能评估。用户依从性—组合方法很多,包括自我或引导/程序化的细胞组装,可以按照用户设定进行空间布局。
Ultimately, by establishing a library of biofunctional modular units that is representative of: i) a key biological function from a specific tissue or organ, ii) the underlying matrix that supports the cell modules and provides essential cues for their bioactivity, researchers will be able to advance tissue engineered constructs toward more realistic clinical applications. In this progress report, we provide an up-to-date outlook on current strategies for assembling bottom-up tissue engineered constructs and include a critical perspective on the key role that modular cell–biomaterial assemblies will play in the upcoming years for building biofunctional microtissues with a truly pro-regenerative potential.
最终,通过建立一个具有代表性的生物功能模块单元库:i)来自特定组织或器官的关键生物学功能,ii)支持细胞模块并为其生物活性提供基本线索的基础基质,研究人员将能够将组织工程结构推向更现实的临床应用。在这份进度报告中,我们提供了对当前组装自下而上组织工程结构的策略的最新展望,包括对模块化细胞-生物材料组件在未来几年内为建立具有真正再生潜力的生物功能微组织所发挥的关键作用的重要观点。
💡
从单元重复模块到模块库:模块库应有 —i)来自特定组织或器官的关键生物学功能,ii)支持细胞模块并为其生物活性提供基本线索的基础基质。模块库的建立进一步推进自下而上工程在临床中应用的现实意义。

2. Cell-Rich Assemblies(多细胞组装)(无支架)

2.1 “2.5D” Multicellular Sheet-Like Assemblies(“2.5D”多细胞片状组件) :

The current understanding that cells naturally self-organize into highly ordered multicellular structures which precede tissue and organ formation has laid the foundation for the development of advanced methodologies that aim to recapitulate the high cellular density of human tissues
目前对细胞在组织和器官形成之前自然地自组织成高度有序的多细胞结构的认识,为发展旨在概括人类组织高细胞密度的高级方法学奠定了基础
💡
细胞在组织和器官形成之前自然地自组织成高度有序的多细胞结构
Cell sheet technologies take advantage of close cell–cell interactions to autonomously engineer microtissues without the use of biodegradable cell-supportive scaffolds. As mentioned earlier, their presence can hinder proper cell–cell communication, spatial arrangement and its degradation byproducts can influence cell physiology.[23,24] Their degradation can also originate areas rich in ECM deposition that can hinder communication between neighboring cell clusters.[25] Native tissues and organs are densely populated by numerous cell types that are enclosed in a vast framework of tissue-specific matrix that allows efficient cellular intercommunication, directing fate and function at the microscale. This cell-rich 3D environment with well-orchestrated ECM presentation leads to higher order physiological function seen in living tissues.[26] Pursuing this design philosophy is essential for building up different types of tissues such as cardiac, renal, and hepatic that generally operate at high cell densities.[27–29
细胞片技术利用紧密的细胞间相互作用自主设计微组织,而无需使用可生物降解的细胞支持支架。如前所述,它们的存在会阻碍正常的细胞间交流,其空间排列及其降解副产物会影响细胞生理。[23,24]它们的降解也可能源于富含ECM沉积的区域,这可能会阻碍相邻细胞群之间的交流。[25]本地组织和器官密集地分布着大量的细胞类型,这些细胞类型被包裹在组织特定基质的巨大框架中,允许有效的细胞相互通信,在微观尺度上指导命运和功能。这种细胞丰富的 3D 环境具有精心策划的 ECM 呈现,导致在活组织中看到更高阶的生理功能。[26]追求这种设计理念对于建立通常在高细胞密度下运行的不同类型的组织,如心脏、肾脏和肝脏是必不可少的。
💡
细胞片技术 优势:利用紧密细胞间相互作用,自主设计,无需细胞支架 (人工)支架副作用:阻碍细胞交流,空间排列及其降解副产物会影响细胞生理。 基质作用:作为天然支架并且具有组织特异性(不同组织其基质不同,所以不同组织有其特定的支架,私人订制 💗),包裹大量细胞,允许通信,微观尺度组织体系命运指导者( 🚢掌舵人,控制方向),营造丰富3d微环境(最重要作用,直接导致细胞组织 功能升级到pro版本,功能pro版本更多针对适用于高密度细胞用户,这些用户需要开通功能pro版本才能满足运作需求人工支架模拟ECM,但从未超越尤其降解后会对人体产生副作用
In this context, cell sheets arise as scaffold-free high cell density microstructures that aim to recapitulate the contiguous assembly of cells seen in living tissues, thus attempting to retain its structural and functional cues.[30] Here, cells are cultured and proliferate in adhesive substrates until confluent layers are generated. These cell-rich sheets are then harvested with methodologies that should maintain cell sheet integrity and allow it to be easily transferred. Thus, cell sheet harvesting with proteolytic enzymes (e.g., trypsin, dispase, etc.) has been discontinued because these can affect cell integrity, as well as disrupt essential intercellular junctions and cell surface proteins.[31,32
在这种情况下,细胞片作为无支架的高细胞密度微结构出现,旨在再现活体组织中所看到的细胞的连续组装,从而试图保留其结构和功能线索。在这里,细胞在粘性基质中培养和增殖,直到形成汇合层。这些富含细胞的薄片随后被采集,采集方法应保持细胞薄片的完整性,并允许它容易转移。因此,已经停止使用蛋白酶(如胰蛋白酶、分散酶等)采集细胞片,因为这些酶会影响细胞的完整性,以及破坏基本的细胞间连接和细胞表面蛋白。
💡
细胞片:无支架高细胞密度微结构 目的:再现活体组织细胞的连续组装,保留其结构和功能线索(探究天然组织组装时结构与功能关系与逻辑) 培养方法:在粘性基质中培养和增殖,直到形成汇合层,然后采集转移移植 采集方法原则:保持细胞薄片的完整性,并允许它容易转移。其中蛋白酶禁用,因为酶会影响细胞的完整性,以及破坏基本的细胞间连接和细胞表面蛋白
The emergence of smart surface engineering refined the control on cell detachment and enabled cell sheet harvesting in mild conditions. In this sense, Okano ’s group has popularized cell sheet applications by designing a temperature-dependent harvesting substrate, which is commercially available under the brand name UpCell.[27,33] The poly(N-isopropylacrylamide) coating undergoes a sharp change in wettability from 37 to 32 °C, which spontaneously peels the cell sheet from the surface at room temperatures.[23,25] Still, this one-time use system is expensive, detachment time may vary significantly, and it can be difficult to handle due to the low range of temperature that triggers the peeling process.[34,35] Thermally expandable hydrogel sheets or multilayered coatings are being explored as an alternative to this technology that facilitate transfer and stamping of cell sheets with spatially controlled cell adhesion.[36–38] Other sophisticated harvesting systems have been developed over the years exploring different cell-friendly stimuli, including electroactive substrates, pH-responsive coatings, and photoactivatable surfaces, that change their wettability on-demand.[39,40] In this context, hematoporphyrincontaining films for light-induced cell sheet harvesting of human-bone-marrow-derived mesenchymal/stromal stem cells (MSCs) were successfully developed.[41] Light-responsive titanium dioxide (TiO2) nanodots films also offer spatial control over cell detachment and can be used for aligning cell sheets in predetermined directions.[42] Alternatively, magnetic forces can hold cells in place until harvesting is intended.[6] Magnetite cationic liposomes modified with RGD (arginine-glycine-aspartic acid) cell-adhesive peptide were used as smart coatings for developing fibroblast cell sheets, which were stabilized under a magnetic field and could be moved as a contiguous microtissue on-demand.[43] Also, cells internalizing magnetic nanoparticles can be forced to assemble over different surfaces to create cell sheet-like structures.[44] More recently, Park and co-workers embedded magnetic nanoparticles in thin hydrogel sheets for efficient harvesting of endothelial progenitor cell sheets.[45] Using a bioinspired approach, researchers have also developed a cellulose-dopamine coating which enabled cellulase-assisted enzymatic harvesting with minimal cell damage as recently reported.[35
智能表面工程的出现改进了对细胞分离(脱离)的控制,使细胞片能够在温和的条件下收获。从这个意义上说,Okano的团队通过设计一种依赖温度的收割基板来推广细胞薄片的应用,其品牌是UpCell。[27,33]聚(N-异丙基丙烯酰胺)( PIPAAm)涂层的润湿性在 37 至 32 °C 时发生急剧变化,在室温下会自发地将细胞片从表面剥离。 [23,25]尽管如此,这种一次性使用的系统还是很昂贵脱离时间可能会有很大差异,而且由于引发剥离过程的温度范围较低,可能难以处理。[34,35]热膨胀水凝胶片或多层涂层正在被探索作为该技术的替代技术,其促进具有空间控制的细胞粘附性细胞片的转移和冲压。[36-38]多年来,已经开发出其他复杂的采集系统,探索不同的对细胞友好的刺激物,包括电活性基质、pH 响应涂层和光活化表面,它们可以按需改变它们的润湿性。[3940]在本文中,成功地开发了用于光诱导人骨髓间充质/基质干细胞(MSCs)的细胞片采集的含血卟啉的薄膜。[41]光响应性二氧化钛(TiO2)纳米点膜还提供了对细胞分离的空间控制,并可用于在预定方向上排列细胞片。[42]或者,磁力可以使细胞保持在原位,直到打算采集为止。[6]用RGD(精氨酸-甘氨酸-天冬氨酸)细胞粘附肽修饰的磁性阳离子脂质体被用作开发成纤维细胞片的智能涂层,它们在磁场下稳定下来,可以根据需要作为连续的微组织移动。[43]此外,内含磁性纳米颗粒的细胞可以被迫在不同的表面上组装,形成细胞片状结构。[44]最近,Park和他的同事将磁性纳米颗粒嵌入薄的水凝胶片中,以有效地获取内皮祖细胞片。[45]利用生物启发的方法,研究人员还开发了一种纤维素-多巴胺涂层,如最近报道的那样,它能够在纤维素酶辅助下进行酶促收获,并将细胞损伤降至最低
💡
温敏性材料进行的纳米级智能表面处理技术:材料:PIPAAm 目的:使细胞温和无损条件中分离(相比于机械和酶解法) 原理:涂层的润湿性在 37 至 32 °C 时发生急剧变化—PIPAAm是一种非离子聚合物,当加热到临界温度以上时,它在水中表现出相分离,即所谓的低临界溶液温度(LCST)。这种现象与异丙基侧基的疏水性密切相关,并使PIPAAm的表面能够随着温度刺激的变化而改变其细胞粘附性。在高于PIAPPAm的LCST(32℃)的温度下,表面是疏水的,因此适合于细胞黏附。在低于 LCST 的温度下,表面变得亲水,抑制细胞粘附并使细胞片可分离 缺点:昂贵(一次性)、脱离时间可能会有很大差异、引发剥离过程的温度范围较低,可能难以处理。 其它可按需改变表面润湿性的表面材料:热膨胀水凝胶片或多层涂层(促进具有空间控制的细胞粘附性细胞片的转移和冲压)、电活性基质、pH 响应涂层 表面定向排列光活化表面:光诱导型含血卟啉的薄膜、光响应性二氧化钛(TiO2)纳米点膜(对细胞分离的空间控制,并可用于在预定方向上排列细胞片) 磁:磁力的空间控制采集、RGD细胞粘附肽修饰的磁性阳离子脂质体(在磁场下稳定下来,可以根据需要作为连续的微组织移动) 磁性纳米颗粒:1. 细胞内化(可被指导在不同的表面上组装,形成细胞片状结构)2. 嵌入薄的水凝胶片(指导细胞组装成片) ❗有关磁修饰的表面大概设计到细胞空间定位,比如定位分离采集,定位组装成一定结构 纤维素-多巴胺涂层:使酶促分离对细胞损伤降至最低
Monolayer cell sheets are built with millions of cells, but their sheet-like fragile structure is hard to manipulate and does not offer enough microtissue depth in comparison to thick native tissues.[46] However, researchers can assemble thicker constructs just by stacking cell sheets, taking advantage of the celldense vast ECM network that naturally intertwines the different cell sheets into a contiguous and integral multilayered microtissue.[47] Their versatility extends beyond stacking single cell-type sheets, but also enables rich combinations of multiple cell types, thus more accurately mimicking heterogenous native tissues. The crosstalk signaling present in tissues plays a key role in influencing cell fate and potentiating biofunctionality.[48] Cells from closely related osseous tissues (i.e., periodontal ligament and jaw bone) assembled into a co-cultured cell sheet exhibited enhanced osteogenic potency and were more structurally similar to the native periodontal tissue in vivo.[49] Still, although some improvements can be achieved with randomized distribution of cell populations, reconstituting tissue-specific biological function relies on recapitulating its hierarchic cellular organization patterns. For instance, the liver’s ability to perform more than 500 different functions is associated with its repetitive functional units (liver lobules) that are organized in a hierarchic multiscale manner.[50] Precisely engineered culturing and harvesting substrates can direct the spatial arrangement of different cell populations in cell sheets design, contributing toward more complex and in vivo-like assemblies. In this context, straightforward approaches such as microcontact printing of ECM proteins using rationally designed stamps have been explored to enable spatial control over cellular adhesion layouts during cell sheet manufacturing.[51,52] By controlling nonadhesive and cell adhesive areas, researchers engineered hepatocyte modules surrounded by endothelial cells, achieving a co-patterned liver-like microtissue that maintained the ability to synthesize albumin and urea (Figure 2A,B).[53,54] In addition, other advanced methodologies (e.g., microfluidics chips and dielectrophoretic[55]/magnetic patterning[56]) that permit cell spatial organization were also explored for designing liver-like cell-rich lobules with biomimetic distribution[57] or for fabricating microvessel-like cell sheets that recapitulate key features of perfusable vascularized networks.[58] Apart from controlling cell distribution and harvesting in in vitro cultured substrates, cell sheets have also been recently processed as scaffolds-free 3D bioinks. Using an elegant approach, researchers used extrusion bioprinting to fabricate sheet-based constructs that showed an increased structural integrity in comparison to standard cellaggregates owing to their in vitro produced ECM.[59]
单层细胞膜由数百万个细胞构成,但它们片状的脆弱结构很难操纵,与厚厚的天然组织相比,没有提供足够的微组织深度。[46]然而,研究人员只需堆叠细胞膜,就可以组装更厚的结构,利用细胞密集的巨大ECM网络,该网络自然地将不同的细胞膜交织成连续的、完整的多层微组织。[47]它们的多功能性不仅可以堆叠单个细胞类型的薄片,还可以实现多种细胞类型的丰富组合,从而更准确地模拟不同的天然组织。组织中存在的串扰信号在影响细胞命运和增强生物功能方面发挥着关键作用。[48]来自密切相关的骨组织(即牙周膜和颌骨)的细胞组装成共培养的细胞片显示出更强的成骨能力,并且在结构上与体内的天然牙周组织更相似。[49]尽管细胞群体的随机分布可以实现一些改进,但重建组织特定的生物功能依赖于概括其层级细胞组织模式。例如,肝脏执行500多种不同功能的能力与其以分层多尺度方式组织的重复功能单元(肝小叶)有关。[50]精确设计的培养和收获底物可以指导细胞片设计中不同细胞群的空间排列,有助于实现更复杂和类似活体的组装。在这种背景下,已经探索了直接的方法,例如使用合理设计的邮票对ECM蛋白质进行微接触打印,以使得能够在细胞片制造期间对细胞黏附布局进行空间控制。[51,52]通过控制非黏附和细胞黏附区域,研究人员设计了由内皮细胞包围的肝细胞模块,获得了保持合成白蛋白和尿素的能力的共图案化的肝状微组织(图2A,B)。[53,54]此外,其他先进的方法(例如,还探索了允许细胞空间组织的微流体芯片和介电泳法[55]/磁性图案化[56]),以设计具有仿生分布的富含肝细胞的小叶[57],或用于制造概括可灌流的血管网络的关键特征的微血管状细胞片。[58]除了在体外培养的基质中控制细胞分布和收获外,细胞片最近还被加工为无支架的3D生物墨水。使用一种优雅的方法,研究人员使用挤压生物打印来制造基于片状结构的结构,由于其在体外产生的细胞外基质,与标准细胞集合体相比,结构完整性增强。
notion image
💡
单层细胞膜层叠:单层细胞膜脆弱难控,通过层层堆叠就可以到达足够的微组织厚度,这种堆叠可以同种细胞,也可以异种细胞共培养,共培养可以实现细胞组织更强生理活性与功能,结构也更接近天然组织。 细胞组织图案定制原因:细胞群特定空间排列与组织复杂性特定功能密切相关 方法:微接触打印技术、微流体芯片、介电泳法、磁性图案化 细胞片应用:无支架的3D生物墨水
notion image
Still, engineering a functional microtissue requires more than just controlling the spatial location of different cells and cell types, but also cellular alignment. In fact, many tissues in the human body (e.g., skin, skeletal muscle, myocardium, brain, and cartilage) show regional and directional 3D anisotropy that is essential for their mechanical and biological functions.[64] For instance, the myocardium is assembled from multiple layers of cardiomyocytes aligned along several directions throughout the whole tissue in a 3D anisotropic organization that is required for efficient electrical propagation and synchronized contractility.[65] Researchers have demonstrated that layered cardiomyocyte sheets rapidly establish electrical communications via functional gap junctions, achieving 3D-like myocardial tissues with elongated cardiomyocytes and synchronized macroscopic pulsations.[66,67] These bioengineered microtissues possessed elongated cardiomyocytes resembling the native cardiac muscle, which maintained spontaneous pulsations for more than 1 year postimplantation.[31,68] Moreover, the cardiac microtissues show intrinsic angiogenic potential, which is essential for fostering favorable host tissue integration and preventing ischemia.[69,70] Alternatively, researchers have engineered a 3D anisotropic skeletal muscle tissue by stacking myoblast sheets with a defined alignment as seen in Figure 2C,D.[60] Interestingly, anisotropy from top layers was transferable to layers underneath due to the self-organization capacity of myoblasts. Also, cell sheets with different orientations were designed by stacking perpendicularly aligned differentiated myotube layers that do not self-organize, thus generating multioriented constructs.
尽管如此,设计一个具有功能的微组织不仅需要控制不同细胞和细胞类型的空间位置,还需要细胞排列。事实上,人体中的许多组织(如皮肤、骨骼肌、心肌、脑和软骨)都表现出局部和方向性的3D各向异性,这对它们的机械和生物功能是必不可少的。[64]例如,心肌是由在整个组织中沿几个方向排列的多层心肌细胞组成的3D各向异性组织这是有效的电传播和同步收缩所必需的。[65]研究人员已经证明,分层的心肌细胞片通过功能缝隙连接迅速建立电子通信,获得具有拉长的心肌细胞和同步的宏观脉动的类似3D的心肌组织。[66,67]这些生物工程微组织拥有类似天然心肌的拉长的心肌细胞。[31,68]此外,心脏微组织显示出内在的血管生成潜力,这对于促进良好的宿主组织整合和防止缺血是必不可少的。[69,70]或者,研究人员通过以确定的排列方式堆叠成肌细胞片来设计出3D各向异性骨骼肌组织,如图2C,D所示。有趣的是,由于肌细胞的自组织能力,顶层的各向异性可以转移到下面的层。另外,通过堆叠不自组织的垂直排列的分化肌管层,可以设计出不同方向的细胞片,从而产生多方向的构造。
notion image
💡
细胞局部和方向性的3D各向异性:是特定功能必要条件 通过堆叠和细胞自组织能力,可以实现各向异性细胞片。
Nevertheless, not all morphological aspects can be recapitulated by stacking cell sheets in a stratified manner. In fact, some architectural features of native tissues include tubular structures (e.g., trachea, blood/lymph vessels, or intestines) with specific 3D conformations and different cells at specific locations (i.e., wall versus lumen).[62] Inspired by organisms development, stacked cell sheet constructs can be maneuvered toward such configurations by twisting, rolling, or wrapping into desired tubular forms.[71] Multilayered cardiomyocyte sheets wrapped around a resected rat aorta formed a functional myocardial tube that integrated with the host tissue and exhibited well-defined sarcomeres with contractile behavior.[72] Their flexible nature can also be exploited for replacing the damaged epithelial lining in tracheas.[73] Vascular media and adventitia tubules have been assembled by rolling fibroblast and smooth muscle cell (SMCs) sheets, achieving 0.3 mm wall-thick constructs able to sustain supraphysiological mechanical stresses.[74] Other researchers have designed 3D anisotropic hMSCs tubules by rolling cell sheets cultured on aligned ECM substrates.[61] The tubular vascular grafts were then matured in static or dynamic (i.e., bioreactor) conditions. Ultrastructure analysis revealed distinct parallel grooves for bioreactor-matured tubules that fused in thicker walls (0.25 vs 0.17 mm in static samples) and exhibited mechanical and vasodilation features resembling the native arterial wall (Figure 2E,F). However, these studies do not include endothelial cells in the composition of the tubules, a critical aspect since these structures play a key role in their native counterparts.[74] T o address this, researchers have developed 3D macroscopic tubular tissues by a stress-induced rolling of cell sheets containing arrangements of endothelial cells, SMCs and fibroblasts in a layered fashion (Figure 2G,H).[62] Moreover, by controlling cell orientation in the 2D surface template, they could fabricate tubules with circumferentially and longitudinally oriented SMCs, thus mimicking the anisotropy seen in native tunica media and adventitia. Aiming to achieve more complex architectures, self-folding co-cultured cell sheets were obtained by culturing cells in origamiinspired micromolded alginate substrates that release cell assemblies upon enzymatic degradation with alginate lyase.[75] The resulting dodecahedron microstructures give rise to 3D co-culture cell-rich assemblies via a self-folding process mediated by cell–cell traction force (Figure 2I,J)
然而,并不是所有的形态方面都可以通过以分层的方式堆叠细胞片来概括。事实上,天然组织的一些结构特征包括具有特定3D构象的管状结构(例如,气管、血管/淋巴管或肠)以及在特定位置(即,壁与腔)的不同细胞。[62]受生物体发展的启发,堆叠的细胞片结构可通过扭转、滚动、或包裹成所需的管状形式。[71]包裹在切除的大鼠主动脉上的多层心肌细胞片形成了一个与宿主组织结合的功能性心肌管,并显示出具有收缩行为的明确的肌节。[72]它们的弹性也可用于替代气管中受损的上皮衬里。[73]血管中层和外膜小管已经通过滚动的成纤维细胞和平滑肌细胞(SMCs)片组装在一起,[74]其他研究人员通过滚动培养在定向ECM基质上的细胞片来设计三维各向异性hMSCs管。[61]然后在静态或动态(即生物反应器)的条件下成熟管状血管移植物。超微结构分析显示,生物反应器成熟的小管有明显的平行凹槽,融合在较厚的壁上(静态样本为0.25 mm比0.17 mm),并显示出类似于天然动脉壁的机械和血管扩张特征(图2E,F)。然而,这些研究没有将内皮细胞包括在小管的组成中,这是一个关键方面,因为这些结构在它们的本地对应物中扮演着关键的角色。[74]为了解决这个问题,研究人员通过应力诱导滚动包含内皮细胞、SMC和成纤维细胞以分层方式排列的细胞片来开发3D宏观小管组织(图2G,H)。[62]此外,通过控制2D表面模板中的细胞方向,他们可以制造具有周向和纵向取向的SMC的小管,从而模拟自然的中膜和外膜中的各向异性。为了实现更复杂的结构,通过在受原始启发的微模化藻酸盐基质中培养细胞获得自折叠共培养细胞片,藻酸盐裂解酶在酶降解时释放细胞组件。[75]由此产生的十二面体微结构通过细胞-细胞牵引力介导的自折叠过程产生3D共培养富含细胞的组件(图2I,J)。
notion image
notion image
notion image
💡
细胞片可以首先实现图案定制化(空间排列),再通过堆叠方式和细胞自组织能力实现各向异性(顺序排列),再进一步不仅仅局限于常规堆叠,还可以通过扭转、滚动、或包裹成所需的管状形式。甚至可以在基质中自组装成球。 并且后处理营养灌流培养方式对于细胞聚集体也有一定影响:动态培养(生物反应器)比静态培养要好一些。
It is important to note that thick microtissues (i.e., >50–100 µm) often become necrotic before sufficient neovascularization develops, which can be overcome by incorporating endothelial cells, either in co-culture or as individual layers, capable of forming microvascular networks.[76] Moreover, laser-assisted bioprinting can be used for guiding human endothelial cells to form tubule-like structures on top of cell sheets.[77] Micropatterning of electrochemical-responsive substrates has also allowed the harvesting of human umbilical vein endothelial cells (HUVECs) in the form of capillary-like luminal structures.[78] Previous studies also demonstrated that functional vascularization improves integration with host tissues.[79] The characteristic intercapillary network of specific tissues is a key parameter to take into account in the bottomup design process.[80] For instance, the heart has a narrower intercapillary distance (<25 µm) than other tissues. Hence, when assembling cardiac tissues, it is important to optimize the ratio of noncardiomyocyte cells as they can affect the contractility of the engineered 3D construct and possibly cause arrhythmia.[76,81
值得注意的是,厚重的微组织(即>50-100微米)通常在充分的新生血管形成之前就会坏死这可以通过将内皮细胞结合在一起培养或作为单独的层来克服,这些内皮细胞能够形成微血管网络激光辅助生物打印可用于引导人体内皮细胞在细胞膜上形成管状结构。[77]电化学反应底物的微图案化还允许以毛细血管样腔结构的形式获取人脐静脉内皮细胞(HUVECs)。[78]先前的研究还表明,功能性血管化改善了与宿主组织的整合。[79]特定组织特有的毛细血管间网络是自下而上设计过程中要考虑的关键参数。[80]例如,心脏的毛细血管间距离比其他组织更窄(<25微米)。因此,在组装心脏组织时,优化非心肌细胞的比例是很重要的,因为它们会影响工程3D结构的收缩能力,并可能导致心律失常。
💡
组织尺寸超过阈值就会分层出现坏死核心, 方法:可以通过与内皮细胞共培养
Overall, multilayered cell sheet constructs can be stacked on top of one another to engineer specific stratifications seen in hierarchic organs. Cell sheets can also be deformed into tubular shapes that are prominent in certain tissues, as well as the vast vascular network. When in contact with vascular beds or host organs, cell-rich sheet constructs naturally integrate onto tissue interfaces and develop functional intervascularization. Over the last decade, cell sheets have been bioengineered into different tissues, ranging from small vessels, cardiac microtissues, hepatic-like lobules, skeletal muscle, cornea, and others.[24] Functional prevascularized and perfusable cardiac microtissues have been successfully developed, but the stacking process is still manual and operator dependent.[82,83] Recently, an advanced automated cell sheet stacking technology was developed by Okano ’s group, and is envisioned to shift current cell sheet designs toward large scale manufacturing and translation into clinical applications.[47] Adding to engineered cell sheets, other scaffold-free assemblies such as 3D multicellular aggregates (e.g., spheroids,[84] fibers,[85] dense membranes, etc.)[86] have been receiving an increasing focus for bottom-up tissue engineering and for establishing organotypic preclinical disease models
总体而言,多层细胞片结构可以一个接一个地堆叠在一起,以设计在分层器官中看到的特定分层。细胞片也可以变形成管状形状,这在某些组织以及巨大的血管网络中都是突出的。当与血管床或宿主器官接触时,富含细胞的片状结构自然结合到组织界面上,并发展出功能性的血管间化。在过去的十年里,细胞片已经被生物工程化为不同的组织,从小血管、心脏微组织、肝样小叶、骨骼肌、角膜等。已经成功地开发出具有预血运和灌流功能的心脏微组织,但堆叠过程仍然依赖于人工和操作员。[82,83]最近,Okano的团队开发了一种先进的自动细胞片堆积技术,该技术有望将当前的细胞片设计转向大规模制造和转化为临床应用。[47]在工程细胞片的基础上,添加其他无支架组件,如3D多细胞聚集体(例如,球体,[84]纤维,[85]致密膜等)[86]在自下而上的组织工程和建立器质性临床前疾病模型方面受到越来越多的关注
💡
细胞片技术:堆叠技术的发展-由人工到自动,从而实现大规模,并且可以与其它无支架细胞聚集体(构建块)进行共组装

2.2 3D Multicellular Assemblies(3D多细胞组件)

2.2.1 Spherically Shaped Multicellular Aggregates( 球形多细胞聚集体)
Cell-rich 3D aggregates are valuable building blocks for fabricating organotypic microtissues owing to their closer correlation to living organs gene expression patterns,[87] multidimensional cell–cell interplay, and pH/nutrient/oxygen diffusion gradients.[88] Engineered multicellular 3D constructs better recapitulate these intrinsic functions since cells are immediately driven toward 3D-like microaggregates in in vitro culture platforms, in contrast to the initial 2.5D monolayer setting of cell sheets.[89–91] The resulting structures display a more realistic physiological response at early timepoints and intrinsically include microenvironment specific (bio)chemical/physical cues that support their biological performance.[91 富含细胞的3D聚集体与活体器官基因表达模式、多维细胞-细胞相互作用和pH/营养/氧气扩散梯度更密切相关,因此是构建器官型微组织的有价值的构建块。[88]设计的多细胞3D结构更好地概括了这些内在功能,因为在体外培养平台中,细胞被立即驱动向类似3D的微聚集体,而不是最初的2.5D单层设置。[89-91]所得到的结构在早期时间点表现出更真实的生理反应,并且本质上包括支持其生物学性能的微环境特定(生物)化学/物理线索。
💡
意思是,在体外培养平台 ,除非特殊表面粘附处理,一般会直接成球或其它3D聚集体。
Cell-rich 3D clusters fabrication takes advantage of intercellular adhesion mechanisms (e.g., cadherin and integrin-mediated)[92,93] to create self-assembled structures comprising single, or multiple cell types, unlocking the potential to fabricate heterotypic cell constructs more similar to the cellular heterogeneity of human tissues.[94,95] Upon in vitro maturation, these seamless 3D microaggregates secrete de novo ECM frameworks in which cells reside and exchange interactions, adding to their biofunctionality and biomedical applicability. To date, numerous technologies have been developed for the rapid manufacture of scaffold-free 3D cellular aggregates via culture and proliferation in nonadhesive setups, including forced floating and hanging drop platforms, multiarrayed micromolds, and microfluidic chips.[96,97] These well-established methods have been employed by researchers for high-throughput generation of multicellular microaggregates exhibiting rod-, toroidal-, or honeycomb-like architectures, as well as spherical morphologies (i.e., 3D spheroids, Figure 1).[97–99
富含细胞的3D簇制造利用细胞间黏附机制(例如,钙粘附素和整合素介导的)[92,93]来创建包含单个或多个细胞类型的自组装结构,从而释放了构建更类似于人类组织细胞异质性的异型细胞结构的可能性。[94,95]在体外成熟后,这些无缝的3D微聚集体分泌新的ECM框架,细胞在其中驻留和交换相互作用,增加了它们的生物功能和生物医学适用性。迄今为止,已经开发了许多技术,通过在非粘附设置中培养和增殖来制造无支架的 3D 细胞聚集体,包括强制浮动和悬滴平台、多阵列微模具和微流控芯片。 [96,97] 这些成熟的方法已被研究人员用于高通量多细胞微聚集体的生成表现出杆状、环形或蜂窝状结构,以及球形形态(即 3D 球体,图 1)。 [97-99
💡
3D簇利用cell-cell作用成簇,并分泌ECM,ECM又进一步促进cell-cell作用。 非粘附平台培养技术:悬滴、浮动、微模/微流控芯片(半粘附) 形状:杆状、环形或蜂窝状结构,以及球形
In particular, self-assembled 3D spheroids have rapidly arisen as attractive cell-rich unitary building blocks for recapitulating in vivo organs functional units since 3D multicellular aggregates with spherical shapes are also observed during tissue morphogenesis.[100] 3D spheroids exhibit tissuespecific features, shape reproducibility, size versatility, ease of handling, bioprocessing, and potential for upscaled production.[97,101] The latter poses a critical aspect when researchers envision the clinical application of cell-dense multiscale constructs that require millions of 3D spheroidal functional units.[88,102,103
特别是,由于在组织形态发生过程中也观察到具有球形形状的 3D 多细胞聚集体,自组装 3D 球体已迅速成为具有吸引力的富含细胞的单一构件,用于概括体内器官功能单元。 [100] 3D 球体表现出组织特异性特征、形状再现性、尺寸多功能性、易于处理、生物加工和大规模生产的潜力。 [97,101] 当研究人员设想需要数百万个 3D 的细胞密集多尺度结构的临床应用时,后者是一个关键方面球形功能单元。[88,102,103
💡
3D球体优点:组织特异性特征、形状再现性、尺寸多功能性、易于处理、生物加工和大规模生产
To date, advanced monotypic (single culture) and heterotypic (co-culture) scaffold-free 3D multicellular spheroids have been developed as in vitro microphysiological systems for modeling pathophysiology of human diseases or as unitary building blocks for tissue engineering of cardiac, hepatic, vascular, or neuronal tissues, among others.[89,90,104] In the context of tissue engineering and regeneration, 3D spheroids have been employed as angiogenic stimulating units (i.e., via secretion of trophic factors—VEGF, PDGF)[93] or as functional blocks for the assembly of prevascularized microtissues.[90] Progresses in this field indicate that 3D spheroids comprising heterogeneous cell populations better recapitulate the complexity of human tissues and exhibit a more pro-regenerative capacity. In a recent study, 3D co-culture spherical constructs comprising HUVECS and human bone marrow MSCSs (hBM-MSCs) were fabricated for improving bone regeneration (Figure 3A). Upon implantation into chick femur bone defects endothelial-skeletal 3D clusters improved collagen II and angiogenic proteins expression in the osteogenic niche. More importantly, an increased mineralization and bone volume deposition was obtained for 3D HUVECHBMSCs co-culture spheroids when compared to the sham defect group (Figure 3A).[105] The establishment of functional tubular-vessel-like networks with positive blood perfusion have also been reported in co-cultured 3D spheroids comprising human osteoblasts (hOB) and human dermal microvascular endothelial cells (HDMECs) upon implantation into mouse dorsal skin models.[106] This evidences the tissue integrative properties of prevascularized 3D spheroid building blocks and the importance of taking this into consideration when engineering implantable cell-rich 3D assemblies. By using a similar strategy, 3D MSCs–OECs (outgrowth endothelial cells) co-culture spheroids were established in nonadherent agarose micromolds to function as elementary units for prevascularized microtissues formation. The established 3D spheroids demonstrated a significant pro-angiogenic potential in in vivo chick chorioallantoic membrane (CAM). assays, accompanied by close tissue integration, and their culture under xeno-free conditions potentiates their applicability in bottom-up tissue engineering (Figure 3B).[107] It is worth to reference that in vitro culture of cell-rich assemblies under xeno-free conditions is an important parameter for cell-based therapies application in a more realistic clinical setting.
notion image
到目前为止,先进的单型(单一培养)和异型(共培养)的3D多细胞球体已被开发为用于模拟人类疾病的病理生理学的体外微生理系统,或作为心脏、肝脏、血管或神经组织等的组织工程的单一构建块。[89,90,104]在组织工程和再生的背景下,3D球体已被用作血管生成刺激单元(即,通过分泌营养因子-血管内皮生长因子,[90]这一领域的进展表明,包含异质细胞群的3D球体更好地概括了人体组织的复杂性,并显示出更强的促再生能力。在最近的一项研究中,构建了由人脐静脉内皮细胞和人骨髓间充质干细胞组成的3D共培养球形结构(HBM-MSCs)以促进骨再生(图3A)。植入鸡股骨缺损处后,内皮-骨骼3D簇改善了成骨骨龛中的II型胶原和血管生成蛋白的表达。更重要的是,与假缺损组相比,3DHUVECHBMSCs共培养的球体获得了更多的矿化和骨体积沉积(图3A)。[105]在共培养的由人成骨细胞(HOB)和人皮肤微血管内皮细胞(HDMECs)组成的共培养的3D球体中,也有报道建立了具有正血流灌注的功能性管状网络。[106]这证明了预先血运的3D球体构建块的组织集成特性以及在设计植入富含细胞的3D组件时考虑到这一点的重要性。通过使用类似的策略,在非贴壁琼脂糖微模型中建立3D MSCs-OECs(生长内皮细胞)共培养球体,作为预血管微组织形成的基本单元。所建立的3D球体在体内鸡绒毛膜尿囊膜(CAM)中显示出显著的促血管生成潜力。伴随着紧密的组织整合的分析及其在无异物条件下的培养增强了它们在自下而上的组织工程中的适用性(图3B)。值得参考的是,在无异种条件下体外培养富含细胞的组件是基于细胞的治疗在更现实的临床环境中应用的重要参数。
notion image
notion image
💡
3D球体应用:体外微组织模拟平台、器官构建模块 共培养(异质3D球体)功能和生理活性可能会更好。
Despite their recognized validity for regenerative medicine applications, these examples mainly employ nonlinked, individual spheroids. Also, the spherical morphology restricts the geometrical complexity of fabricated 3D multiscale microtissue assemblies.[89] For bioengineering larger and more intricately patterned tissues, 3D cell-rich spherical aggregates must be processed through advanced methodologies.[93] In this sense, researchers are advancing 3D spheroids postproduction bioprocessing by using microplatforms that promote spheroid-spheroid fusion and by taking advantage of automated biofabrication technologies (e.g., 3D bioprinting) that build-up spheroid-based living architectures with user-defined geometries.[102
尽管它们对再生医学应用的有效性得到认可,但这些示例主要使用非链接的单个球体。此外,球形形态限制了制造的 3D 多尺度微组织组件的几何复杂性。 [89]对于更大和更复杂图案组织的生物工程,必须通过先进的方法处理富含 3D 细胞的球形聚集体。 [93]从这个意义上说,研究人员正在通过使用促进球体-球体融合的微平台并利用自动生物制造技术(例如 3D 生物打印)来推进 3D 球体后期生产生物处理,该技术可以构建具有用户定义几何形状的基于球体的生活架构
💡
3D球体限制:球体相对独立无联系、限制组件复杂性 解决方案:自动生物制造技术构建用户定义的几何形状构架。
Spheroids fusion occurs when spatially adjacent spheroids establish physical contact and coalesce into a more cohesive single tissue, a spontaneous process that occurs during biological development and that is fundamental in myocardial and skeletal tissues formation.[102,108] This process is then followed by cell self-organization into distinct layers within the resulting microtissues, similarly to what occurs during human organs development.[108] Also, taking advantage of nonadhesive poly(dimethylsiloxane) (PDMS) microchamber arrays, the fabrication of robust neurospheroid networks was established through fused neuronal processes protruding from spatially adjacent 3D neurospheroids of rat cortical cells (Figure 3C). During optimization, the authors discovered that PDMS microchambers with 100 µm diameter and depth were optimal for promoting oxygen diffusion to 3D neurospheroids and for assuring constructs viability.[109] The interconnected/fused 3D spheroid neuronal network was then implanted in cortical tissue and exhibited excellent integration into cortical tissues as observed by the establishment of functional synaptic connections with host neurons. Random 3D microscale spheroids fusion has also been employed for creating 3D millimeter-scaled tissues with complex geometries (e.g., star, square, triangle, etc.) in nona dherent micromolded platforms (Figure 3D).[110,111] The microfabricated tissues comprising co-cultured HUVECs and MSCs 3D spheroids as unitary building blocks showed autonomous deformation, contractility and formed self-assembled vascular structures in high deformation regions.[111] This resulted in spatially modulated secretion of pro-angiogenic growth factors and specific vascular patterns.[111
当空间相邻的球体建立物理接触并结合成更有凝聚力的单个组织时,球体融合发生,这是生物发育过程中发生的自发过程,是心肌和骨骼组织形成的基础[102,108]这一过程之后,细胞在所产生的微组织中自我组织成不同的层次,与人类器官发育过程中发生的情况类似。此外,利用非粘附性聚二甲基硅氧烷(PDMS)微腔阵列的优势,通过从空间相邻的大鼠皮质细胞的3D神经球体突起的融合神经元突起,建立了强大的神经球体网络(图3C)。在优化过程中,作者发现直径和深度为100微米的PDMS微室在促进氧气扩散到3D神经球体和确保构建物生存方面是最佳的。[109]然后将相互连接/融合的3D球体神经元网络植入皮质组织,并通过与宿主神经元建立功能性突触连接观察到其与皮质组织的良好整合。随机3D微尺度球体融合也被用于创建具有复杂几何形状(例如,星形、正方形、三角形等)的3D为微米尺度组织。在NONA不同的微模塑平台中(图3D)。[110,111]由共培养的HUVECs和MSCs 3D球体作为单一构建块组成的微加工组织显示出自主变形、收缩能力,并在高变形区域形成自组装的血管结构。[111]这导致促血管生成生长因子和特定血管图案的空间调节分泌。
notion image
notion image
💡
在不同微塑模型中,球体构建块进一步在各种形状腔室内进行融合培养,从而组装成各种形状的大尺寸构建块。
To achieve more precise spatial positioning and user definedpatterns, 3D spheroids can be processed though 3D bioprinting/robotic assembly or magnetic-based manipulation.[2] In this sense, Mironov’s group bioprinted multicellular 3D spheroids into customized millimeter-sized vascular tubular constructs with well-defined topology and cellular composition as a result of spheroid-spheroid fusion (Figure 3E).[112] This groundbreaking approach, alongside with Kenzan ’s method[113] for bioprinting 3D spheroids (up to 500 µm) into needle arrays which are removed after spheroids fusion, are envisioned to contribute for the fabrication of evermore complex cell-rich biospecific constructs with controlled architectural features. Yet, to date, such strategies still require specialized equipment, extensive troubleshooting, and the maturation of bioprinted microtissues along time. Alternatively, 3D spheroids magnetic manipulation using preprimed cells with magnetoferritin nanoparticles has also been explored to generate structurally defined microtissue rings for tissue engineering, but the biofunctionality and long-term safety of such constructs remains to be elucidated.[114,115] Adding to the opportunities that arise from the establishment of dense 3D spheroid assemblies the development of 3D multicellular organoids in vitro is also becoming increasingly relevant in numerous fields of research including tissue engineering and regenerative medicine, disease modeling, and drug discovery.
为了实现更精确的空间定位和用户定义的图案,可以通过3D生物打印/机器人组装或基于磁性的操作来处理3D球体。[2]从这个意义上说,Mironov的团队通过球体-球体融合将多细胞3D球体生物打印成具有明确拓扑结构和细胞组成的定制微米大小的血管管状结构(图3E)。[112]这种开创性的方法,以及Kenzan的方法[113],将3D球体(高达500微米)生物打印成针状阵列,在球体融合后被移除,预计将有助于制造更复杂的富细胞生物特定结构,具有受控的结构特征。然而,到目前为止,这样的策略仍然需要专门的设备、广泛的故障排除以及生物打印微组织的成熟。另外,人们还探索了使用磁铁蛋白纳米颗粒预浸细胞的三维球状体磁操作,以产生结构明确的微组织环,用于组织工程,但这种构造的生物功能和长期安全性仍有待阐明。除了建立致密的3D球体组件所产生的机会外,体外3D多细胞有机体的开发在包括组织工程和再生医学、疾病建模和药物发现在内的许多研究领域也变得越来越重要。
notion image
💡
进一步介绍了生物打印技术
Human 3D organoids are highly relevant as building blocks for bottom-up tissue engineering since their assembly is reminiscent of tissues organogenesis and morphogenesis. Generally, 3D organoids are composed of stem cells (i.e., human adult/ embryonic stem cells, or human pluripotent stem cells (hPSCs)) that undergo in vitro proliferation, directed differentiation, cell-sorting, lineage commitment, and self-assembly into higher order 3D architectures.[118] Interestingly, upon in vitro maturation, 3D organoids generate highly organized cell-rich structures that somewhat recapitulate the complex structural features and physiological responses of the tissues their cells were derived from.[119,120] Despite their organotypic features it is important to emphasize that current organoidgenesis in vitro is only possible under a highly controlled microenvironment often including a complex cell culture medium that contains multiple factors (i.e., small molecules and growth factors) for precisely guiding cellular differentiation and also an ECMmimetic hydrogel to further provide bioinstructive cues (i.e., Matrigel).[118] T o date, these multicellular systems have been increasingly employed in advanced bottom-up engineering of numerous tissue types such as kidney, liver, or pancreas. In fact, researchers have been recently able to develop pancreatic islet organoids from human embryonic stem cell derived pancreatic progenitor cells.[121] The cells spontaneously aggregated in vitro under controlled culture conditions and formed robust multicellular spheroid-shaped organoids with controlled size and cellular heterogeneity. Upon maturation the resulting 3D organoids exhibited functional insulin secretion after a glucose challenge. It is important to emphasize that such organoids were assembled using a unique hydrogel platform (i.e., Amikagel) and that the development of biofunctional organoids in fully scaffold-free conditions remains to be demonstrated to the best of our knowledge.[121] There is no doubt that these are highly promising microphysiological constructs, however most in vitro generated organoids still generally lack key cellular constituents of the tissues they aim to recapitulate. In this context, researchers are actively developing new strategies for including stromal, immunological, and vascular components in these 3D multicellular assemblies.[120,122] It is envisioned that advances in these important aspects will have a significant impact in the development of more physiomimetic building blocks for bottom-up tissue engineering.
人体3D有机体作为自下而上的组织工程的构建块具有很高的相关性,因为它们的组装使人联想到组织器官发生和形态发生。通常,3D类器官由干细胞(即人类成人/胚胎干细胞,或人类多能干细胞(HPSCs))组成,它们在体外进行增殖、定向分化、细胞分选、谱系定位和自组装成更高阶的3D结构。[118]有趣的是,在体外成熟后,3D类器官产生高度有序的富含细胞的结构,在某种程度上概括了它们的细胞来源组织的复杂结构特征和生理反应。[119,120]尽管它们具有器官型特征,但必须强调的是,当前的体外类器官发生只有在高度受控的微环境下才可能实现,微环境通常包括复杂的细胞培养介质,该介质含有多种因素(即小分子和生长因子),用于精确指导细胞分化,还包括模拟ECM的水凝胶,以进一步提供生物教育线索(即Matrigel)。[118]到目前为止,这些多细胞系统已越来越多地被用于许多组织类型的高级自下而上工程中,如肾脏、肝脏或者胰腺。事实上,研究人员最近已经能够从人类胚胎干细胞来源的胰岛前体细胞中培养出胰岛类器官。[121]这些细胞在受控培养条件下在体外自发聚集,形成具有可控大小和细胞异质性的健壮的多细胞球状类器官。成熟后,所得到的3D有机化合物在葡萄糖挑战后显示出功能性的胰岛素分泌。必须强调的是,这些有机化合物是使用独特的水凝胶平台(即Amikagel)组装的,据我们所知,在完全无支架的条件下开发生物功能有机化合物仍有待证实。[121]毫无疑问,这些都是非常有前途的微生理学结构,然而大多数体外产生的有机化合物通常仍然缺乏它们所要概括的组织的关键细胞成分。在这种背景下,研究人员正在积极开发新的策略,将基质、免疫和血管成分包括在这些3D多细胞组件中。[120,122]可以预见,这些重要方面的进展将对自下而上组织工程的更多仿生构建块的发展产生重大影响。
💡
微环境对于类器官功能的实现是必不可少的。微环境通常包括介质(生长因子、激素等)和水凝胶(模仿ECM),还有免疫成分、血管成分等等
2.2.2 Fiber-Shaped Multicellular Aggregates(纤维状多细胞聚集体)
Fiber-shaped constructs are highly valuable for bottom-up tissue engineering applications due to their ease of processability into higher order living architectures and similarity to multidirectional native anatomic structures, including blood vessels, neurons, lymph vessels, ligaments, and tendons.[123] In fact, the exacerbation of the length of one single dimension in fiber-shaped materials enables the spatially unconfined deposition of continuous structures. This unique potential has been leveraged by the rapidly emerging field of 3D printing/ bioprinting which explores the potential of long fiber-shaped materials to create personalized implants and tissue engineered cell-laden constructs with highly specific architectures and functionality.[124–126] Moreover, know-how from the textile industry, namely, knitting, weaving, and reeling has been transposed for the bottom-up tissue engineering of fibrous structures due to its potential for generating biofunctional micro/macroscale constructs with improved bioactivity and mechanical properties.[127] Interesting advances in this field include, but are not limited to, the fabrication of cell-laden hydrogel yarns for tendon bioengineering through mechanical stimulation[128] or the fabrication of vessel-like networks with cell-laden collagen fibers.[129
纤维状结构在自下而上的组织工程应用中具有很高的价值,因为它们易于加工成更高层次的生物结构,并且与多方向的天然解剖结构相似,包括血管、神经元、淋巴管、韧带和肌腱。[123]事实上,纤维状材料中一个单一维度长度的加剧使得连续结构的空间无限制沉积成为可能。这种独特的潜力被迅速崛起的3D打印/生物打印领域所利用,该领域探索了长纤维形状材料的潜力,以创造具有高度特定结构和功能的个性化植入物和组织工程细胞结构。此外,纺织业的技术诀窍,即针织、编织和缫丝,已被移植到纤维结构的自下而上的组织工程中,因为它有可能产生具有改进的生物活性和机械性能的生物功能的微/宏尺度结构。该领域的有趣进展包括,但不限于,通过机械刺激制造肌腱生物工程用的载细胞水凝胶纱线[128],或用载细胞的胶原纤维制造血管状网络。
💡
纤维结构特点:一个单一维度长度的加剧使得连续结构的空间无限制沉积成为可能。并可以利用纺织业的技术诀窍,产生具有改进的生物活性和机械性能的生物功能的微/宏尺度结构。
Despite the versatility of fiber-shaped constructs, few reports describe the fabrication and exploitation of fully scaffold-free cell-rich fibers. In this context, T akeuchi ’s group pioneered the production of meter-long cellular microfibers.[130] By using a double-coaxial microfluidics device, researchers were able to fabricate core–shell fibers comprising alginate crosslinked with calcium ions (diameters ranging from 100 to 200 µm) (Figure 4A). Such hollow structures were laden with mixtures of cell suspensions and ECM proteins, the latter capable of forming gelled structures at in vitro cell culture temperature conditions or in the presence of thrombin and maintained high cell viability. Cells from different sources including fibroblasts, cardiomyocytes, endothelial, and pancreatic cells could be processed in the shape of long fibers in the presence of specifically selected and optimized ECM proteins. In this approach, the alginate shell was easily removed from fiber constructs formed by fibroblasts or MIN6m9 cells (a mouse pancreatic beta cell line) using alginate lyase. Importantly, the generated cellular microfibers maintained shape and structural integrity after this process. Although this study represented a breakthrough in the use of elongated cellular fiber-shaped materials, the use of relatively stiff gel-forming ECM proteins as a determinant factor for the success of fibers’ formation did not warrant a fully scaffold-free character to the achieved microfibers. Moreover, the assembly of microfibers as higher order constructs was restricted to alginate-coated units, while the handling of cell/ ECM-only structures may pose additional challenges to the precise assembling of macrometric constructs.
尽管纤维形状的结构具有多功能性,但很少有报道描述完全无支架的富细胞纤维的制造和开发。在此背景下,T akeuchi的团队率先生产了长达一米的蜂窝微纤维。[130]通过使用双同轴微流控设备,研究人员能够制造出由藻酸盐与钙离子(直径从100到200微米不等)交联的核壳纤维(图4A)。这种中空结构中充满了细胞悬液和ECM蛋白的混合物,后者能够在体外细胞培养温度条件下或在凝血酶存在的情况下形成凝胶结构,并保持较高的细胞活力。来自不同来源的细胞,包括成纤维细胞、心肌细胞、内皮细胞和胰腺细胞,在特定选择和优化的ECM蛋白存在下,可以被加工成长纤维的形状。在这种方法中,使用藻酸盐裂解酶可以很容易地从成纤维细胞或MIN6M9细胞(小鼠胰腺β细胞系)形成的纤维结构中去除海藻酸壳。重要的是,生成的细胞微纤维在这一过程中保持了形状和结构的完整性。尽管这项研究代表着细长细胞纤维形状材料的使用取得了突破,但使用相对坚硬的凝胶形成ECM蛋白质作为纤维成功形成的决定因素并不能保证所获得的微纤维具有完全无支架的特性。此外,作为高阶结构的微纤维的组装仅限于藻酸盐涂层单元,而仅细胞/细胞外基质结构的处理可能对宏观结构的精确组装带来额外的挑战。
💡
无支架的富细胞纤维:壳核结构蜂窝长纤维 技术:双同轴微流控设备 壳:藻酸盐与钙离子交联的核壳纤维(水凝胶做壳) 核:细胞悬液和ECM蛋白的混合物 去壳剂:藻酸盐裂解酶 后面两句没看懂
notion image
图4
In an effort to surpass the possible toxicity of enzymemediated methods to degrade alginate reported in primordial studies,[130] a method based on mechanical action to retrieve fibers composed of bone marrow MSCs and collagen was suggested.[134] While this study avoided the use of possibly toxic enzymes, the rapid formation of the cellular fibers (24 h) was still dependent on the addition of ECM proteins. Also based on the co-axial microfluidic-based extrusion of cell suspensions inside hollow alginate tubes, other researchers reported the formation of scaffold-free centimeter-long microfibers built solely from primary human chondrocytes (Figure 4B).[131] After four days of incubation and cellular aggregation, alginate tubes were removed by a postprocessing technique that involved their dissolution in sodium citrate. Cellular strands matured in vitro for 3 weeks in chondrogenic medium could be bioprinted into macrometric constructs with clinically relevant sizes. Interfiber fusion was observed as early as 12 h of contact, and complete merging was obtained after 7 days of in vitro maturation.
为了克服原始研究报道的酶促方法降解藻酸盐的可能毒性,提出了一种基于机械作用的方法来回收由骨髓间充质干细胞和胶原组成的纤维。[134]虽然本研究避免了使用可能有毒的酶,但细胞纤维的快速形成(24小时)仍然依赖于细胞外基质蛋白的添加。同样基于细胞悬浮液在中空海藻酸管内的同轴微流控挤压,其他研究人员报道了仅由原代人类软骨细胞构建的无支架厘米长的微纤维的形成(图4B)。经过四天的培养和细胞聚集,海藻酸盐管通过后处理技术被移除,包括在柠檬酸钠中溶解。在软骨基质中体外成熟3周的细胞链可以被生物打印成具有临床相关大小的宏观结构。纤维间融合早在接触后12h即可观察到,体外成熟后7d达到完全融合。
notion image
💡
这里应用双同轴微流控设备形成长纤维,后处理去除水凝胶外壳得到细胞链核心,细胞链作为生物墨水进行打印。
Alternative approaches to microfluidic-based fabrication of cellular fibers were suggested based on the patterning of growth channels prepared by laser micromachining[135] and more recently, by micromolding.[85] These strategies have been exclusively directed for the preparation of tendon single fibers, and are highly dependent on specific equipment and selective patterning of adhesive proteins into nonadhesive agarose molds.
基于激光微加工[135]和最近的微模塑制备的生长通道的图案化,提出了基于微流控技术制造细胞纤维的替代方法。[85]这些策略专门用于肌腱单纤维的制备,并且高度依赖于特定的设备和将黏附蛋白选择性地图案化成非黏附的琼脂糖模
💡
细胞纤维制造方法
The scaffold-free generation of fiber structures via 3D bioprinting as also been recently materialized through the extrusion of hMSCs cell-rich bioink into a medium containing alginate microgel particles (Figure 4C).[132] T o generate the supporting baths, microgels with different average sizes (7 and 409 µm) were assembled via dual crosslinking of methacrylated and oxidized alginate (OMA), and subsequently crosslinked with calcium. This disruptive approach allowed high-resolution bioprinting of hMSC-rich 3D filaments even with curved, corner, and X-shaped configurations due to the shear-thinning and self-healing properties of the engineered supporting bath, and regardless of microgels size (Figure 4C). The 3D bioprinted cell-rich filaments presented high cellular viability postprinting and the smaller microgels bath allowed to obtain maximum printing resolution of hMSCs filaments as exhibited by the 3D printed anatomic shaped constructs (Figure 4C). T o confer mechanical cues and stability during microtissues maturation postprinting the OMA bath was photocrosslinked. This allowed long-term culture and fusion of stem-cell-rich aggregates into denser 3D microtissues, as well as maintained their differentiation potential toward osteogenic and chondrogenic lineages.[132]
通过3D生物打印无支架生成纤维结构,最近也通过将hMSCs富含细胞的生物墨水挤出到含有海藻酸盐微凝胶颗粒的介质中实现(图4C)。[132]为了产生支撑浴,通过甲基丙烯酸酯和氧化海藻酸盐(OMA)的双重交联组装了不同平均尺寸(7和409微米)的微凝胶,并随后与钙进行交联。这种颠覆性的方法使富含hMSC的3D细丝即使具有弯曲、拐角和X形构型也能够实现高分辨率生物打印,这是由于设计的支持浴具有剪切稀释性和自愈性,并且与微凝胶大小无关(图4C)。3D生物打印的富含细胞的细丝在打印后显示出高的细胞活性,较小的微凝胶浴可以获得hMSCs细丝的最大打印分辨率,如3D打印的解剖形状结构所示(图4C)。为了在显微组织成熟过程中提供机械线索和稳定性,印刷后的OMA浴是光交联化的。这使得富含干细胞的集合体可以长期培养和融合成更致密的3D微组织,并保持它们向成骨和成软骨血统分化的潜力。
notion image
💡
3D打印纤维细胞丝
Nevertheless, most approaches targeting the preparation of microfibers are still focused on the achievement of multicellular bulk structures. A high degree of cellular compaction, however, may lead to poor oxygen and nutrients diffusion during maturation periods, culminating in loss of cellular viability and function in fibers’ core regions. T o tackle this challenge, microporous tissue strands were prepared by adding a porogen agent—alginate microbeads—to cellular suspensions before extrusion inside a hollow alginate tube (Figure 4D).[133] Fibers comprising adiposederived MSCs (ASCs) generated by this methodology showcased approximately 25% porosity and high pore interconnectivity. When compared to bulk nonporous strands, porous counterparts showed improved long-term in vitro cellular viability, as well as higher efficacy on the induction of both the osteogenic and chondrogenic differentiation on the aggregated cells (Figure 4D).
然而,大多数针对微纤维制备的方法仍然集中在实现多细胞本体结构上。然而,细胞高度紧凑可能会导致成熟期氧气和营养物质扩散不良,最终导致细胞活力和纤维核心区功能的丧失。为了应对这一挑战,在细胞悬浮液中加入致孔剂海藻酸微珠,然后在中空的海藻酸管中挤压(图4D),制备了微孔组织链。[133]通过这种方法产生的含有脂肪来源的间充质干细胞(ASCs)的纤维显示出大约25%的孔隙率和高的孔互连性。与块状无孔股相比,多孔股在体外表现出更高的长期细胞存活率,并且在诱导聚集细胞成骨和成软骨分化方面具有更高的效率(图4D)
notion image
💡
改善纤维细胞传质:致孔剂藻酸盐微珠。
An overall analysis of current technologies available for the fabrication of scaffold-free cellular fibers enabled identifying opportunities in this rapidly growing, yet still poorly explored field. In this context, fiber-based textile engineering processes are particularly interesting for tailoring the mechanical properties (e.g., tensile stress/strength, Young’s modulus, and elongation at break) of multifiber assemblies to better recapitulate the biomechanical features of native tissues.[136] Relevant examples of textile techniques for such applications include knitting (e.g., allows control over interfiber porosity, higher through-plane strength, and stretchability), braiding (e.g., tailoring of load-bearing properties, tensile strength, and abrasion resistance), or the less mechanically demanding weaving process (e.g., tunable mechanical anisotropy and allows improved control over cell distribution), and winding of fibers onto 3D tubular constructs.[137,138] Furthermore, architectural manipulation of multiple fibers, each containing HUVECs, fibroblasts, or hepatocytes, allowed different cells to be interfaced in predefined patterns across braided assemblies.[138] The braiding process resulted in vastly different mechanical properties, with differences on the range of three orders of magnitude.[138] Future approaches based on the knitting and/or printing of co-cultured fibers or fibers comprising different cell types (or in distinct stages of differentiation/maturation) may pave the way for the fabrication of architecturally precise and hierarchic constructs that better recapitulate the features of human tissues with fibrillar structures.
对目前可用于制造无支架蜂窝纤维的技术进行全面分析,能够在这一快速增长但仍未得到充分探索的领域发现机会。在此背景下,基于纤维的纺织工程方法对于剪裁多纤维组件的机械性能(例如,拉伸应力/强度、杨氏弹性系数和断裂伸长率)以更好地概括天然组织的生物力学特征特别感兴趣。[136]用于这种应用的纺织技术的相关实例包括针织(例如,允许控制纤维间孔隙率、更高的穿透面强度和延伸性)、编织(例如,承载性能、拉伸强度和耐磨性的剪裁),或者对机械要求较低的编织工艺(例如,可调节的机械各向异性),并允许改进对细胞分布的控制),以及将纤维缠绕到3D管状结构上。此外,对多个纤维(每个纤维包含HUVEC、成纤维细胞或肝细胞)的结构操纵允许不同的细胞以预定义的模式连接在编织组件上。[138]编织过程导致非常不同的机械性能,[138]基于共培养纤维或含有不同细胞类型(或处于不同分化/成熟阶段)的纤维的针织和/或印花的未来方法可能为制造更好地概括具有纤维结构的人体组织的特征的建筑精确和分层结构铺平道路。
From the former examples it becomes clear that the assembly of 3D cellular aggregates into higher order structures provides an exciting approach to generate cell-dense tissues from the bottom-up. However, from a critical perspective, cells selfassembly in both 2.5D sheets and 3D multicellular aggregates (e.g., spheroids, fibers, etc.) still occurs in a stochastic mode that does not fully recapitulate the highly controlled process of tissues morphogenesis at a unicellular level. Aiming to address this uncertainty, cutting-edge technologies for bottomup tissue engineering have focused on the synthetic engineering of cell membrane surface to imprint biospecific cues and preprogram cell-rich scaffold-free assemblies with precise cell–cell selectivity and spatiotemporal organization. In the following section, we highlight these emerging paradigms and present the most recent advances of these approaches.
从前面的例子中可以清楚地看出,将3D细胞聚集体组装成更高级别的结构提供了一种令人兴奋的方法,可以自下而上地生成细胞密度高的组织。然而,从关键的角度来看,细胞在2.5D薄片和3D多细胞聚集体(例如球体、纤维等)中都是自组装的。仍然以随机模式发生,不能完全概括在单细胞水平上高度受控的组织形态发生过程。为了解决这种不确定性,自下而上组织工程的前沿技术集中在细胞膜表面的合成工程上,以印记生物特异的提示,并预编程具有精确的细胞-细胞选择性和时空组织的富含细胞的无支架组件。在接下来的部分中,我们将重点介绍这些新出现的范例,并介绍这些方法的最新进展。
💡
自组装也是在相对随即将的模式下发生的,需要精确的细胞-细胞选择性和时空组织的富含细胞的无支架组件。
2.2.3. Unitary Cell Surface Bioengineerin(单一细胞表面生物工程)
In the context of bottom-up tissue engineering, the manipulation of cell surface to promote a programmed self-assembly into higher order 3D bioarchitectures, represents a powerful approach for assembling unitary cellular building blocks into highly controlled microtissues (Figure 1). Although cells can be coated with hard shells[139] we will mainly focus on soft surface modifications[140] and on precisely programmed surface engineering[141] allowing cells to be molded and organized into more complex structures.
在自下而上的组织工程的背景下,操纵细胞表面以促进程序化的自组装成为更高阶的3D生物结构,代表了将单一的细胞构建块组装成高度受控的微组织的强大方法(图1)。尽管细胞可以被硬壳覆盖[139],但我们将主要关注软表面修饰[140]和精确编程的表面工程[141],从而使细胞能够被模塑和组织成更复杂的结构。
💡
表面工程:增加自组装受控度
Currently, cell surface modification is facilitated by the knowledge of various bioconjugation chemistries together with synthetic biology approaches (e.g., genetic engineering) and other methodologies that include the inclusion of multifunctional micro- and nanosized agents capable of connecting multiple cells. Adding to this, the vast array of available biorthogonal coupling chemistries, as well as their specific binding nature, allow for the construction of surface modified cellular modules leading to precise hierarchic architectures.[142] Because different cell types can be functionalized differently, researchers can control the cellular spatial arrangement in bottom-up assembled constructs.
目前,细胞表面修饰是通过各种生物偶联化学的知识以及合成生物学方法(例如,基因工程)和其他方法来促进的,其中包括能够连接多个细胞的多功能微米和纳米制剂。此外,大量可用的双正交偶联化学及其特殊的结合性质,允许构建表面修饰的细胞模块,从而形成精确的分层结构。[142]由于不同的细胞类型可以不同地功能化,研究人员可以控制自下而上组装的结构中的细胞空间排列。
In particular, cell surface glycoengineering arisen as an elegant metabolic cell engineering concept that exploits intrinsic sialic acid biosynthesis pathways in order to install reactive functional groups at cells surface. Cell functionalization takes place upon unnatural monosaccharides uptake and incorporation within the sialoglycan metabolism, which is responsible for continuous remodeling of natural sialic acid end-capping residues in live cells.[143] Bertozzi ’s group pioneered this biotechnological cellular hijacking tool by exposing at the cell surface biorthogonal ketone and azide groups available for oxime and click-chemistry conjugations, respectively.[144,145] Since then, advances in biorthogonal chemistry have presented this field with additional sialoglycan-compatible groups such as biotin, alkyne, alkene, and thiols. More recently, other innovative strategies incorporating arylazide photocrosslinkers, bifunctional sialoglycan analogues (e.g., azide-alkyne) and caging groups capable of neutralizing surface negative charge and inducing cell aggregation, have been reported.[143,146,147]
特别是,细胞表面糖工程作为一种优雅的代谢细胞工程概念出现,它利用固有的唾液酸生物合成途径在细胞表面安装反应性官能团细胞功能化发生在唾液酸代谢中非天然单糖的摄取和并入,这是活细胞中天然唾液酸端封端残基持续重塑的原因。[143]Bertozzi的团队通过在细胞表面分别暴露可用于肟和点击化学结合的双正交酮和叠氮基团,开创了这种生物技术细胞劫持工具。[144,145]从那时起,双正交化学的进步为这一领域提供了额外的唾液酸相容基团,如生物素、炔烃、烯烃和硫醇。最近,还报道了其他创新策略,包括芳拉齐德光交联剂、双功能唾液聚糖类似物(例如叠氮-乙炔)和能够中和表面负电荷并诱导细胞聚集的笼状基团。
💡
细胞表面糖工程
Among these strategies, azide-glycoengineering is by far the most explored alternative, owing to its high in vivo chemical stability, unique presence in the body, as well as the growing popularity of strain-promoted copper-free azide-alkyne cycloaddition (SPAAC) reactions with fast kinetics at physiological conditions under the absence of catalysts.[148] Still, a lack of cell selectivity in co-culture conditions is one of glycoengineering main limitations, but this can be overcome via delivery with cell-penetrating and targeted nanoassemblies (e.g., liposomes). In line with this, researchers were able to improve cell-selectivity and surface engineering efficacy by administering ligand-targeted liposomes loaded with azidosugars.[149] This allows for precise cell attachment of imaging/therapeutic agents, biomaterials, nanocarriers, or even other surface-modified cells.
在这些策略中,叠氮糖工程是迄今为止被探索最多的替代方案,因为它在体内具有很高的化学稳定性,在体内的独特存在,以及在没有催化剂的生理条件下促进的无铜叠氮-炔环加成反应(SPAAC)越来越受欢迎。[148]尽管如此,在共培养条件下缺乏细胞选择性仍然是糖工程的主要限制之一,但这可以通过细胞穿透和靶向纳米组装(例如脂质体)来克服。与此相一致,研究人员能够通过给予装载叠氮糖的配体靶向脂质体来提高细胞选择性和表面工程效率。[149]这使得成像/治疗剂、生物材料、纳米载体甚至其他表面修饰的细胞能够精确地附着在细胞上
💡
糖工程实现细胞粘附可控有序,而非随意自发
Unsurprisingly, glycoengineering represents an enabling technology for various biomedical applications, namely, both live cell,[150,151] and extracellular vesicle labeling/tracking,[152] drug-based cancer theranostics,[153] as well as cell-based chemo- and immunotherapies.[154,155] Despite an impressive body of literature on these recent advances, tissue engineering concepts exploiting this biomachinery phenomenon are still at their youth. Glycoengineering of typically nonadherent human Jurkat cell surfaces imparted them with extra free thiol groups, thus stimulating spontaneous self-aggregation into clusters.[156] Importantly, this can allow allocation of typically nonadherent cell lines (e.g., immune cells) in bottom-up assemblies of heterogenous cell-rich building blocks as it will be further discussed. Alternatively, coupling of immunostimulants to live cells has recently been reported via a glycoengineering strategy.[154] The concept of incorporating immune cells in engineered assemblies, i.e., immunoengineering, is on the forefront of developing clinically relevant immunomodulatory tissues.[157] T ranslation of this technology to other cell types in the future, could be exploited for fast-generating spheroid building blocks or allowing more sophisticated and hierarchic assemblies via thiol-reactive incorporation (e.g., alkyne, norbornene, maleimides, or photocrosslinkable alkenes). Cells with norbornenebearing surfaces have now been successfully generated, which could allow for light-enabled precise spatial control of cell–cell interactions.[158] However, although norbornene-sugar incorporation efficiency is still limited in present attempts, other photocrosslinkable groups have shown promising results (i.e., acrylamide).[159] Cells exhibiting triple-orthogonal surface engineering have also been reported, which could allow for more complex heterogenous configurations of cell–cell interactions.[159] Alternatively, cell surface-grafting strategies are starting to emerge, either as controlled radical polymerization or anchoring telechelic synthetic polymers, in order to re-engineer cell surface functionality and interactions.
不出所料,糖工程代表了一种用于各种生物医学应用的使能技术,即活细胞[150,151]和细胞外小泡标记/跟踪,[152]基于药物的癌症治疗,[153]以及基于细胞的化学和免疫疗法。[154,155]尽管有大量关于这些最新进展的令人印象深刻的文献,但利用这种生物机械现象的组织工程概念仍处于年轻阶段。对典型的非黏附的人Jurkat细胞表面进行糖基化工程,赋予它们额外的自由硫醇基团,从而刺激自发的自我聚集成簇。[156]重要的是,这可以允许将典型的非黏附的细胞系(例如,免疫细胞)分配到自下而上的富含异质细胞的构建块组装中,这将在后面进一步讨论。或者,免疫刺激剂与活细胞的偶联最近通过糖工程策略被报道。[154]在工程组件中结合免疫细胞的概念,即免疫工程,处于开发临床相关免疫调节组织的前沿。[157]未来将这项技术翻译到其他类型的细胞,可用于快速生成球体构建块,或通过硫醇反应结合(例如,炔烃、降冰片烯、马来酰亚胺或光交联烯)来实现更复杂和分级的组装。现在已经成功地产生了具有降冰片表面的细胞,这可以实现对细胞-细胞相互作用的光激活的精确空间控制。[158]然而,尽管去冰片-糖的掺入效率在目前的尝试中仍然有限,但其他光交联基(即丙烯酰胺)已经显示出有希望的结果。[159]也有报道显示具有三正交表面工程的细胞,这可能允许细胞-细胞相互作用的更复杂的异质构型。[159]或者,细胞表面嫁接策略开始出现,要么是可控的自由基聚合,要么是锚定遥控合成聚合物,以重新设计细胞表面的功能和相互作用。
💡
糖基化工程意义:赋予非粘附细胞(如免疫细胞)膜表面获得粘附基团,从而加入异质细胞构建块组装
However, surface modification can elicit possible phenotypic and biofunctional alterations that are yet to be fully understood.[156] The usage of smart biodegradable cell linkages with on-demand dynamic anchoring of cells may help overcoming some of those concerns. With this rationale, a biocompatible and chemically detachable cell glue system based on biorthogonal linkers connecting glycoengineered cells was successfully developed.[162] Azide-containing cells were functionalized with bioreducible tetrazine and trans-cyclooctene linkers containing internal disulfide bonds, achieving fast cell–cell gluing upon mixing the two different cell groups. Then, the established cell glue network could be disassembled after natural glutathione (5 × 10−3 m) administration, showcasing the reversible glue behavior (Figure 5A). Another elegant way of obtaining on-demand control over cell–cell interactions was recently achieved by using bioengineered azide mammalian cells surface to contain β-cyclodextrin, which forms an inclusion complex with trans-azobenzene via host–guest interactions.[163] The azobenzene trans-to-cis conversion can then be triggered by photoactivation, dissociating the inclusion complex in a reversible manner. Using this rationale, photoactive azobenzene functionalized with cell recognition moieties (azo-aptamer) were used to enable cell–cell interactions between cyclodextrin-modified cells and azobenzene-bound cells, a process that could be easily reversed by light exposure. The photocontrolled manipulation of cell–cell interactions could also be useful in developing user-defined hierarchic cellular-rich assemblies.
然而,表面修饰可以引起尚不完全了解的可能的表型和生物功能改变。[156]智能生物可降解细胞连接与细胞按需动态锚定的使用可能有助于克服其中的一些担忧。在此基础上,成功地开发了一种基于连接糖工程细胞的双正交连接物的生物相容性和化学可拆分的细胞胶体系。[162]含叠氮的细胞被含有生物还原的四嗪和含有内部二硫键的反环辛烯连接物功能化,当两种不同的细胞组混合时,实现了快速的细胞-细胞粘连。然后,在给予天然谷胱甘肽(5×10−3m)后,所建立的细胞胶网络可以被解体,显示出可逆胶行为(图5A)。另一种按需控制细胞-细胞相互作用的优雅方法是最近实现的,使用生物工程叠氮哺乳动物细胞表面含有β-环糊精,它通过主-客体相互作用与反式偶氮苯形成包合物。然后,偶氮苯的反式-顺式转化可以通过光激活触发,以可逆的方式解离包合物。基于这一原理,具有细胞识别功能的光活性偶氮苯(偶氮适配基)被用来实现环糊精修饰的细胞和偶氮苯结合的细胞之间的细胞-细胞相互作用,这一过程可以很容易地被光照射逆转。细胞-细胞相互作用的光控操作在开发用户定义的层次化富含细胞的组件时也可能有用
notion image
💡
糖基化是表面工程(表面修饰)的一种方法,糖基就是一种信号分子(受体与配体),这里是负责进行cell-cell相互识别的信号分子。信号分子说到底就是靠结构域中的某些化学基团来进行匹配(生物化学) 这里通过前后给予不同化学功能修饰,实现可逆可控细胞结合-解离。 这里的图中机理是二硫键的氧化还原(解离条件是谷胱甘肽)。另外一个例子是受配体本身结构顺反异构的转变(转变条件是光)。 可控可逆目的:智能生物可降解细胞连接与细胞按需动态锚定的使用 这种受环境(化学物质、ph、温度、光等)刺激实现可逆可控,按需结合解离的修饰技术也可以说是4D系统。
This advanced technology has been explored in recent studies to direct drugs and nanoassemblies toward tumors, while also monitoring its progression.[166] Moreover, by exploiting the tumor-homing properties of MSCs, researchers have used glycoengineered MSCs as nanoparticle beacons, irreversibly trapping nanoconstructs in tumor sites.[150] Due to the high reactivity, bioorthogonal character and biocompatibility of this azide-DBCO chemistry, such rationale could be translated to glycoengineered tissue constructs (GTCs), where exposed azides allow postimplantation follow-up and signal for subsequent GTC-targeted nanoassemblies containing bioinstructive cues. Recent research efforts have achieved encouraging results supporting this novel strategy. For instance, glycoengineered azidechondrocytes could be readily tracked via near-infrared (NIR) imaging 4 weeks after subcutaneous implantation in mice.[167] Moreover, DBCO-650-labeling not only provided improved contrast imaging, but also preserved chondrogenic potency and showed minimal adverse effects on cartilage formation over traditional cell tracking fluorescent probes (i.e., DiD). In a similar approach, the migration of glycoengineered human ASCs (hASCs) in ischemic hindlimb mouse model was also tracked.[151] Again, NIRF-labeling via DBCO-Cy5 probe showed notable biocompatibility, in particular over DiD-based labeling, and allowed efficient in vivo monitoring of intramuscularly administered hASCs for 2 weeks, in particular their co-localization in ischemic sites. In a follow-up study, this technology was used to allocate glycol chitosan nanoparticles containing different imaging probes in hASCs.[168] However, rapid uptake of these clickable nanoassemblies was observed within 1 h of incubation. When envisioning the generation of nanoenabled cell clusters for tissue engineering, avoiding intracellular uptake is a critical parameter. T o this end, photoswitchable nanoparticles were covalently bound to living cell membranes via a similar glycoengineering strategy.[169] Site-specific membrane localization of upconversion nanoparticles in human embryonic kidney 293 (HEK293) cells was evident in fluorescence microscopy studies, which inspires future studies where spatial bioactive presentation can be tuned by external triggers and achieve localized differentiation in hierarchic constructs.
这项先进的技术已经在最近的研究中被探索,以将药物和纳米组件导向肿瘤,同时还监测其进展。[166]此外,通过利用MSCs的肿瘤归巢特性,研究人员将糖工程MSCs用作纳米粒子信标,不可逆转地将纳米结构捕获在肿瘤部位。[150]由于这种叠氮-DBCO化学的高反应性、生物正交性和生物兼容性,这种原理可以转化为糖工程组织结构(GTC),其中暴露的叠氮化物允许植入后的后续跟进和包含生物教育线索的GTC靶向纳米组件的信号。最近的研究工作取得了令人鼓舞的结果,支持这一新的战略。例如,在小鼠皮下移植4周后,通过近红外(NIR)成像可以很容易地追踪到糖工程叠氮软骨细胞。[167]此外,DBCO-650标记不仅提供了更好的对比成像,而且与传统的细胞跟踪荧光探针(即DID)相比,保持了软骨形成的潜力,并且对软骨形成的不良影响最小。在类似的方法中,也跟踪了糖工程人ASCs在缺血后肢小鼠模型中的迁移。[151]再次,通过DBCO-Cy5探针的NIRF标记显示了显著的生物相容性,特别是在基于DID的标记上,并且允许在体内有效地监测肌肉内注射的hASCs 2周,特别是它们在缺血部位的共同定位。在后续的研究中,这项技术被用来在hASCs中分配含有不同成像探针的乙二醇壳聚糖纳米颗粒。[168]然而,在孵育1小时内观察到这些可点击的纳米组件被快速摄取。当设想产生用于组织工程的纳米使能细胞团时,避免细胞内摄取是一个关键参数。为此,可光开关纳米颗粒通过类似的糖工程策略共价结合到活细胞膜上。[169]上转换纳米颗粒在人胚胎肾脏293(HEK293)细胞中的位置特异性膜定位在荧光显微镜研究中是明显的,这启发了未来的研究,即空间生物活性呈现可以通过外部触发来调节,并在分级结构中实现局部分化。
💡
这一段是在探讨正交化学和传统生物标记的优势,还有点击化学
Tracking the fate of transplanted cells is essential for pursuing optimal tissue engineering applications, and this is facilitated in GTCs designs.[170] As demonstrated by Bertozzi ’s group, nonpenetrating azide-binding probes can enable 3D spatiotemporal in vivo imaging of developing zebrafish.[171] Because these probes are not transferable across cells, the addition of different reporters at various time intervals allow for differential labeling of tissue layers and display time-sensitive imaging of GTCs development. Another unique feature of glycoengineering is the sensitivity to different intracellular metabolisms that can distinguish cell subtypes and thus monitor stages of human breast cancer.[172] Similarly, incorporation of azido-sugars was significantly increased during cardiac hypertrophy.[173] Dysregulation of sialoglycan biosynthesis is also found in neurological disorders and central nervous system injuries.[174] These recent findings inspire novel applications in cell-based therapies and tissue engineering with innate pathophysiological-responsive monitoring.
确定移植细胞的命运对于追求最佳的组织工程应用至关重要,这在GTCS设计中得到了促进。[170]正如Bertozzi的团队所证明的那样,非穿透性叠氮结合的探针可以实现斑马鱼发育的3D时空体内成像。[171]因为这些探针不能跨细胞转移,所以在不同的时间间隔添加不同的报告允许对组织层进行差异标记并显示GTCS发育的时间敏感成像。糖工程的另一个独特特征是对不同的细胞内代谢的敏感性,这些代谢可以区分细胞亚型,从而监测人类乳腺癌的分期。[172]类似地,叠氮糖的掺入在心脏肥大期间显著增加。[173]唾液酸聚糖生物合成的调节异常也在神经疾病和中枢神经系统损伤中被发现。[174]这些最新的发现启发了基于细胞的治疗和组织工程中固有的病理生理反应监测的新应用。
💡
还是在讲正交化学标记对动态时空、代谢活动的表征的优势
Holistically, it is important to discuss the limitations of the aforementioned technologies in bottom-up tissue engineering and potential improvements. The dynamic nature of the cell membrane and its refined biomachinery does allow researchers to introduce superficial reactive moieties and use cells as building blocks in chemically driven interactions among other cells, biopolymers, and nanoassemblies. However, dynamic surface glycan recycling and inevitable cell division processes ultimately restrict the timeframe for appreciable surface reactivity. This issue raises concerns about whether long-term feeding of cells with unnatural sugars can lead to unexpected effects on cell and microtissue development.[175] Moreover, the importance of spacers on the stability of such cell-networks requires further studies. Indeed, the risk of using complementary cells for strain-promoted alkyne-azide cycloaddition with insufficient spacer length could result in membrane fusion among adjacent cells.[176] Hence, alternative cell surface engineering approaches using nanocarriers as crosslinking points have also been extensively investigated.
总体而言,讨论上述技术在自下而上的组织工程中的局限性和潜在的改进是很重要的。细胞膜及其精细的生物机械的动态性质确实允许研究人员引入表面反应部分,并将细胞用作其他细胞、生物聚合物和纳米组件之间化学驱动的相互作用的构建块。然而,动态的表面多糖回收和不可避免的细胞分裂过程最终限制了明显的表面反应性的时间框架。这个问题引起了人们的关注,即长期用非天然糖喂养细胞是否会对细胞和微组织的发育产生意想不到的影响。此外,间隔物对这种细胞网络稳定性的重要性还需要进一步研究。事实上,使用互补细胞进行菌株促进的炔叠氮环加成反应的风险不足以导致相邻细胞之间的膜融合。因此,使用纳米载体作为交联点的替代细胞表面工程方法也得到了广泛的研究。
💡
表面工程挑战:会随时间分解,细胞毒性等。并且膜融合效果不达预期。
Nanosized fusogenic liposomes can efficiently fuse with cell membranes upon uptake, thus incorporating their phospholipidic content in living cell membranes.[177] This phenomenon has inspired Yousaf’s group to reprogram cell surfaces to display specific functional groups in order to accelerate 3D tissue assemblies.[178] This approach takes advantage of a pioneering biorthogonal chemistry based on ketone and oxyamine catalystfree conjugation with fast kinetics at physiological conditions and in the presence of serum.[17
纳米级融合脂质体在吸收后可以有效地与细胞膜融合,从而将它们的磷脂含量整合到活细胞膜中。[177]这种现象启发了Yousaf的团队对细胞表面进行重新编程,以显示特定的功能基团,以加速3D组织组装。[178]这种方法利用了开创性的双正交化学,该化学基于酮和羟胺的无催化偶联反应,在生理条件下和血清存在时具有快速的动力学。
💡
双正交化学与脂质体融合技术的联用进行细胞粘附介导。 表面工程分为两种,一种是基质的表面修饰,一种是对细胞膜表面的修饰。 本节讨论的是用双正交化学对非粘附性细胞的细胞膜表面进行基团引入,或者之前的糖基化修饰(双正交化学是直接引入基团,而糖基化本质也是引入反应性基团),通过配体受体特异性结合,本质也是化学键的形成 糖基化是配体受体(结构域中化学键的形成),双正交是形成化学键 本质还是生物化学,基础学科啊,化学结合(共价结合),因为共价结合比较坚固不易破坏,特异性好,相比较于非共价结合(范德华力,疏水键等等,就像蛋白质构象维持力一样)。
Using this approach, researchers have reprogrammed nonadherent Jurkat cells with photolabile-oxyamine and ketone groups, achieving rapid multicellular 3D spheroid assemblies via intercellular oxime linkages.[164] Upon UV illumination, the microtissue disassembled into individual cells. In the same study, fibroblasts transformed with photolabile oxyamines readily adhered to aldehyde-containing interfaces. The reprogramed cells could then be selectively detached from the material upon UV illumination. In addition, large multilayered microtissues containing MSCs and fibroblasts sheets were easily assembled with this technology (Figure 5B). Photodisassembly of tissue multilayers can then be locally triggered resorting to photomasks during UV exposure, which enables the fine remodeling of microtissue hierarchy.
使用这种方法,研究人员用不耐光的羟胺和酮基团对非黏附的Jurkat细胞重新编程,通过细胞间的肟键实现快速的多细胞3D球体组装。[164]在紫外线照射下,微组织分解成单独的细胞。在同一项研究中,转化了耐光性羟胺的成纤维细胞很容易附着在含醛的界面上。然后,在紫外光照射下,重新编程的细胞可以选择性地从材料上分离出来。此外,利用这项技术可以很容易地组装包含MSCs和成纤维细胞薄片的大型多层微组织(图5B)。然后,在紫外线曝光期间,可以借助于光掩模局部触发组织多层的光分解,这使得微组织层次结构的精细重塑成为可能。
B)通过脂质体融合技术使用化学表面编程技术构建由光氧胺MSCs和酮功能化成纤维细胞组成的多层微组织。这两个细胞群体通过羟胺连接组装成共培养的单层和面向用户的多层。经许可复制。[164]版权所有,施普林格自然。
B)通过脂质体融合技术使用化学表面编程技术构建由光氧胺MSCs和酮功能化成纤维细胞组成的多层微组织。这两个细胞群体通过羟胺连接组装成共培养的单层和面向用户的多层。经许可复制。[164]版权所有,施普林格自然。
💡
例子中粘附化学键是肟键,可逆条件是受配体见光结构变化
Liposomal fusion instructs chemoselective cell clustering, locking cells in place until sufficient matrix is produced and elicits microtissue formation and cell spreading. This oxime cell-coupling tool allows easy access to the generation of robust 3D modules with various geometries (e.g., circular, bar, and square) and accelerated assembly times.[179] Also, its fast kinetics have recently enabled in-flow spheroid and tissue assembly via microfluidics.[180] Cell cluster morphology and assembly times can be tuned by controlling flow rate, channel distance and cell density, and the cell modules are stable, thus not requiring seeding in Matrigel or other supporting ECM-mimetic scaffolds. Recently, scaffold-free tissue-like models (e.g., hepatic and cardiac) have been developed using this innovative tool.[181,182] Heterogenous cell populations can be rapidly programmed to self-assembly into dense multilayered tissue modules for biomedical applications. This flexible biotechnological tool is also compatible with current 3D bioprinting technologies where cells could act both as ink and glue, while biosacrificial layers could be achieved by including photo responsiveness within the oxime linkage, as demonstrated in the study by Luo et al.[164] It is important to note that the fusogenic capacity varies significantly among cell types.[183] Although this could represent a limitation to liposome-driven cell assembly strategies, this phenomenon could be exploited for differential cell modification in co-culture conditions. However, to date further studies are still required to ascertain the potential of this approach.
脂质体融合指示化学选择性的细胞聚集,锁定细胞,直到产生足够的基质,并引起微组织形成和细胞扩散。这种肟化细胞耦合工具可以方便地生成具有各种几何形状(如圆形、条形和方形)的坚固的三维模块,并加快了装配时间。[179]此外,它的快速动力学最近通过微流体实现了流动球体和组织组装。[180]细胞簇形态和组装时间可以通过控制流速、通道距离和细胞密度来调整,并且细胞模块是稳定的,因此不需要在Matrigel或其他支持ECM模拟支架中播种。最近,使用这一创新工具开发了无支架组织样模型(例如,肝脏和心脏)。[181,182]异种细胞群体可以快速编程,自组装成致密的多层组织模块,用于生物医学应用。这种灵活的生物技术工具也与目前的3D生物打印技术兼容,细胞可以同时作为墨水和胶水,而生物牺牲层可以通过在肟连接中包括光反应性来实现,正如Luo等人的研究中所证明的那样。[164]重要的是要注意到,融合能力在不同的细胞类型之间存在显著差异。[183]尽管这可能对脂质体驱动的细胞组装策略构成限制,但这种现象可以被用于共培养条件下的差异细胞修饰。然而,到目前为止,仍然需要进一步的研究来确定这种方法的潜力。
💡
总结句:脂质体融合指示化学选择性的细胞聚集,锁定细胞,直到产生足够的基质,并引起微组织形成和细胞扩散。 优点:这种肟化细胞耦合工具可以方便地生成具有各种几何形状(如圆形、条形和方形)的坚固的三维模块,并加快了装配时间。 形状和时间可以调整,并且模块稳定不需要额外机械支持 缺点:融合能力在不同的细胞类型之间存在显著差异
Alternatively, oligonucleotide-based technologies (e.g., DNA aptamers) have also been employed for establishing programmed cell–cell connectivity into higher order cell-rich 3D microtissue constructs. This approach is inspired by the orthogonal hydrogen bonding of nucleic base pairs naturally observed in DNA, an interaction that demands a specific template for complete binding of two complementary nucleotide sequences.[184] Such unique cross-reactivity has led to significant advances in other fields (e.g., DNA origami and patterning, synthetic nanopores, and molecular motors).[185] For bottomup tissue engineering, this selectivity has been materialized by anchoring single-stranded DNA (ssDNA) into living cells membrane to modulate cell–cell interactions between complementing aptamer sequences. This chemical reprogramming can be performed under typical cell culture conditions and does not require cells genetic manipulation. Such strategy has been explored in a seminal work, where ssDNA aptamer sequences were used as binding agents for building selective connectivity among cells. The complementary oligonucleotide sequences were introduced in different cells surface via selective chemistry between modified ssDNA aptamers (i.e., phosphine or difluorinated cyclooctyne) and glycoengineered nonadherent Jurkat cells decorated with azide moieties (via glycocalyx engineering with N-azidoacetylmannosamine sugars).[165] By using specifically matched ssDNA the authors were able to establish large 3D cell aggregates of typically nonadherent cells with DNA clustering being evident at cell–cell interfaces (Figure 5C). Interestingly, a precise control over cellular ratios (1:50) resulted in the formation of rosette-like microtissue assemblies with controlled cell neighboring (Figure 5C), confirming the DNA-mediated cell programming. Overall, these authors further demonstrated that the kinetic parameters of 3D microtissues assembly via defined cellular connectivity depend on DNA sequence complexity, density, and cell concentration.
或者,基于寡核苷酸的技术(例如 DNA 适体)也已被用于将程序化的细胞-细胞连接性建立到更高级的富含细胞的 3D 微组织结构中。这种方法的灵感来自于 DNA 中自然观察到的核酸碱基对的正交氢键,这种相互作用需要一个特定的模板才能完全结合两个互补的核苷酸序列。 [184]这种独特的交叉反应在其他领域(例如 DNA 折纸和图案化、合成纳米孔和分子马达)取得了重大进展。 [185]对于自下而上的组织工程,这种选择性已通过将单链 DNA (ssDNA) 锚定到活细胞膜中以调节互补适体序列之间的细胞-细胞相互作用来实现这种化学重编程可以在典型的细胞培养条件下进行,不需要细胞基因操作。这种策略已在一项开创性工作中进行了探索,其中 ssDNA 适体序列被用作结合剂,用于在细胞之间建立选择性连接通过修饰的ssDNA诱导体(即磷化或二氟化环辛烷)和用叠氮基团装饰的糖工程非粘附Jurkat细胞(通过用N-叠氮乙酰氨基糖的糖工程)之间的选择性化学反应,将互补的寡核苷酸序列引入不同的细胞表面。 [165]通过使用特别匹配的 ssDNA,作者能够建立典型的非贴壁细胞的大型 3D 细胞聚集体,其中 DNA 聚集在细胞-细胞界面处很明显(图 5C)。有趣的是,对细胞比例(1:50)的精确控制导致形成具有受控细胞相邻的玫瑰花状微组织组件(图 5C),证实了 DNA 介导的细胞编程。总体而言,这些作者进一步证明,通过定义的细胞连通性组装 3D 微组织的动力学参数取决于 DNA 序列的复杂性、密度和细胞浓度。
notion image
💡
核苷酸之间氢键还是一个共价化学键,而氢键的载体是ssDNA(单链DNA,融入细胞膜上)之前的例子是二硫键和肟键,或者糖基化
An important advantage of duplex DNA technology is the possibility to reverse DNA-mediated cellular assemblies into their unicellular building blocks via controlled melting or degradation.[165] This linkage reversibility can allow for cells selective isolation/purification,[186] or for templated cells inclusion in higher order ECM-mimetic structures as clusters which then disassemble and migrate to specific areas alike in some pathologies. This technology could therefore be of interest also for investigating fundamental cell migration studies. Using DNAprogrammed assembly of cells, it is also possible to incorporate components of the mesenchyme, such as fibroblasts, allowing the precise engineering of stem cell niches that capture stromal contributions. It is clear that this technology allows a precise control over individual cell–cell interactions and may enable direct examination and manipulation of juxtacrine cell–cell and cell–ECM interactions during tissue maturation
双链 DNA 技术的一个重要优势是可以通过受控的熔解或降解将 DNA 介导的细胞组装体逆转为单细胞结构单元。 [165]这种连锁可逆性可以允许细胞选择性分离/纯化,[186] 或模板细胞包含在更高阶的 ECM 模拟结构中作为簇,然后在某些病理中分解并迁移到特定区域。因此,这项技术也可用于研究基本的细胞迁移研究。使用 DNA 程序化的细胞组装,还可以结合间充质的成分,例如成纤维细胞,从而可以精确地改造干细胞生态位以捕获基质贡献。很明显,这项技术可以精确控制单个细胞-细胞的相互作用,并且可以在组织成熟期间直接检查和操纵近分泌细胞-细胞和细胞-ECM 相互作用
💡
这种利用核苷酸序列特异性结合还具有可逆解链(双链解链叫退火,或者其DNA变性条件)
These methods have unprecedentedly expanded our ability to precisely manipulate cells behavior or adhesion properties. Nevertheless, from a developmental biology perspective, multicellular self-assembly into complex tissue structures is driven mainly by genetically programmed routines activated at specific time frames to induce biologically relevant and dynamically orchestrated physiological responses.[187–189] Recent, approaches have therefore started to use synthetic biology tools to explore self-regulated cell–cell adhesion mechanisms in an attempt to better emulate in vivo biosystems features in in vitro bioengineered 3D microtissue assemblies. In fact, various genetically encoded circuits have already been developed for establishing complex biologically driven patterns at the cell population level. These include the encoding of: i) adhesion-driven assemblies (i.e., phase separation), of ii) lateral inhibition where neighboring cells have different fates, a characteristic process in vertebrates neuronal development, of iii) mechanically driven assemblies that can originate tree-like or fractal patterns, or the use of iv) “reaction-diffusion programing” of biological spatial pattern formation, also termed the “T uring/Gierer–Meinhardt model.”[190] The latter is based on activator–repressor species that govern spatial patterns formation via different diffusion rates. Such interactions are considered to be key in embryonic development and respond to changes in tissue size.[190] This mechanism is also particularly valuable since simple synthetically programmed genetic networks can originate complex and recurrent patterns which have the ability to self-regenerate when disturbed.[190] These strategies therefore add an attractive layer of complexity and dynamism to the formerly discussed cell surface engineering approaches and better recapitulate tissues morphogenesis
这些方法前所未有地扩展了我们精确操纵细胞行为或粘附特性的能力。然而,从发育生物学的角度来看,多细胞自组装成复杂的组织结构主要是由在特定时间范围内激活的基因程序程序驱动的,以诱导生物学相关和动态协调的生理反应。[187-189] 因此,最近的方法已经开始使用合成生物学工具探索自我调节的细胞 - 细胞粘附机制,试图在体外生物工程 3D 微组织组件中更好地模拟体内生物系统特征。事实上,已经开发了各种基因编码电路,用于在细胞群水平上建立复杂的生物驱动模式。这些包括编码:i)粘附驱动的组装(即相分离),ii)相邻细胞具有不同命运的横向抑制,脊椎动物神经元发育的特征过程,iii)机械驱动的组装,可以起源于树-类似或分形模式,或使用 iv) 生物空间模式形成的“反应-扩散程序”,也称为“图灵/吉勒-迈因哈特模型”。[190] 后者基于控制的激活剂-阻遏物种类通过不同的扩散速率形成空间图案。这种相互作用被认为是胚胎发育的关键,并对组织大小的变化做出反应。 [190]这种机制也特别有价值,因为简单的综合编程遗传网络可以产生复杂且反复出现的模式,这些模式在受到干扰时能够自我再生。 [190]因此,这些策略为先前讨论的细胞表面工程方法增加了一层有吸引力的复杂性和活力,并更好地概括了组织形态发生
💡
点题:精确操纵细胞行为或粘附特性的能力 多细胞自组装成复杂的组织结构原理(发育生物学的角度):主要是由在特定时间范围内激活的基因程序程序驱动的,以诱导生物学相关和动态协调的生理反应 受此启发,想从基因角度来调控驱动细胞粘附与自组装
Taking inspiration on these processes, a recent study reported an elegant generation of genetically programmed multilayered 3D microtissue assemblies evocative of dynamic 3D structures observed during embryonic development.[141] Specifically, the authors designed genetic circuits that combined adhesion-driven (i.e., cadherins) and lateral inhibition via synNotch receptors at the cell–cell interface to create complex self-organized 3D microtissues with cell-signaling induced morphologic spatial rearrangements (Figure 5D). In turn, these dynamics generated new cell–cell interactions and reorganizations as a result of cell type diversification and asymmetry.
从这些过程中汲取灵感,最近的一项研究报告了一代优雅的基因编程多层 3D 微组织组件,唤起了在胚胎发育过程中观察到的动态 3D 结构。 [141]具体来说,作者设计了结合粘附驱动(即钙粘蛋白)和通过细胞-细胞界面处的 synNotch 受体的侧向抑制的遗传回路,以创建具有细胞信号传导诱导的形态空间重排的复杂自组织 3D 微组织(图 5D)。反过来,由于细胞类型多样化和不对称,这些动态产生了新的细胞间相互作用和重组。
notion image
It is clear that cutting-edge cell surface modifying technologies enable researchers to sculpt cellular behavior and allow the fabrication of precisely programmed cell-rich microtissues in in vitro culture. Yet, other biomaterial-based approaches are also moving bottom-up tissue engineering forward by imparting biointegrative/bioinstructive cues on cellular building blocks and by unlocking the build-up of highly organized cell– biomaterial assemblies. The following chapters will focus on different cell–biomaterial assemblies and their importance toward the creation of more in vivo-like microtissues
很明显,尖端的细胞表面修饰技术使研究人员能够塑造细胞行为,并允许在体外培养中制造精确编程的富含细胞的微组织。然而,其他基于生物材料的方法也在推动自下而上的组织工程,方法是在细胞构建块上赋予生物整合/生物指导性线索,并解锁高度组织化的细胞-生物材料组件的构建。以下章节将重点介绍不同的细胞-生物材料组装及其对创建更多类似体内的微组织的重要性
💡
这节主要关注cell-cell无支架粘附,是对细胞膜表面进行修饰,如正交化学和基因编辑。 下节关注cell-ECM(生物材料)粘附,是用各种生物材料对衬底进行表面修饰。

3. Cell–Biomaterial Assemblies(细胞-生物材料组件)(支架)

3.1 Macromolecular Cell Surface Functionalization via Layer-by-Layer (LbL)(通过逐层 (LbL) 实现大分子细胞表面功能化)

In recent decades, the LbL assembly technology has emerged as a simple, robust, and highly versatile engineering methodology to modify diverse inorganic and organic surfaces, including eukaryotic cells.[191] LbL technology has rapidly evolved to become a well-established tool for functionalizing surfaces,[192] and fabricating elegant and stable electrostatic, and nonelectrostatic-driven multilayered cellular-rich architectures with multiple functionalities and advantages.[193] Its simplicity and cost-effectiveness (no specific or expensive equipment is required), as well as mild processing conditions turned it into a powerful technology for cell surface functionalization in the context of bottom-up tissue engineering strategies. In fact, the LbL assembly process can be performed under physiological conditions entirely in aqueous solutions. This means that there is no need for the use of organic and/or harmful solvents or extreme pH, ionic strength, and temperature conditions, thus turning it into a very appealing tool when dealing with biomolecules which have not only limited solubility in nonaqueous solutions, but are also highly prone to lose their biological activity. In addition, it is a highly versatile technology both in terms of the substrates, building blocks, and intermolecular interactions that can be used to fabricate simple, organized, as well as more intricate architectures.[194–198] Moreover, an unprecedented source of building blocks including biological materials such as nucleic acids, enzymes and other proteins, peptides, polymers, viruses, or even cells can be used to functionalize the substrate surface, provided that the individual constituents show complementary interactions. Such versatility enables the fabrication of a plethora of continuous, molecularly uniform, and scalable thin films, as well as multilayered surfaces and devices with precisely tailored physicochemical, mechanical and biological properties, including multilayered thin films, free-standing multilayered membranes, core–shell particles, hollow multilayered capsules, or even 3D tissue-like structures across multiple length scales.[192] This is a key advantage over monolayer-based systems, thus turning LbL surface engineering technique into a highly suitable and powerful technology for a wider range of biomedical applications, including tissue and cell surface engineering, enabling a high degree of control over cell–surface, cell–biomaterial, and cell–cell interactions.[199–201]
近几十年来,LBL组装技术已经发展成为一种简单、健壮和高度通用的工程方法,用于修饰包括真核细胞在内的各种无机和有机表面。[191]LBL技术已经迅速发展成为一种成熟的工具,用于表面功能化,[192]并制造优雅稳定的静电和非静电驱动的多层细胞丰富的体系结构,具有多种功能和优势。[193]它的简单性和成本效益(不需要特定或昂贵的设备),以及温和的加工条件使其成为自下而上组织工程策略中细胞表面功能化的强大技术。事实上,LBL组装过程可以在生理条件下完全在水溶液中进行。这意味着不需要使用有机和/或有害的溶剂或极端的pH、离子强度和温度条件,因此在处理生物分子时,它成为一个非常有吸引力的工具,这些生物分子不仅在非水溶液中的溶解度有限,而且非常容易失去生物活性。此外,在底物、构建块和分子间相互作用方面,它都是一种高度通用的技术,可以用来制造简单、有组织的以及更复杂的结构。此外,史无前例的构建块来源,包括生物材料,如核酸、酶和其他蛋白质、肽、聚合物、病毒,甚至细胞,可以用来使衬底表面功能化,只要单个成分表现出互补的相互作用。这种多功能性使得能够制造大量连续的、分子均匀的和可伸缩的薄膜,以及具有精确定制的物理化学、机械和生物特性的多层表面和器件,包括多层薄膜、独立的多层膜、核壳颗粒、中空多层胶囊,甚至跨多个长度尺度的3D类组织结构。[192]这是相对于基于单层的系统的关键优势,从而使LBL表面工程技术成为一种高度适用于包括组织和细胞表面工程在内的更广泛的生物医学应用的强大技术,使得能够高度控制细胞表面、细胞生物材料以及细胞与细胞之间的相互作用。
💡
LBL技术优点: 高度通用:修饰包括真核细胞在内的各种无机和有机表面 技术成熟 简单性和成本效益(不需要特定或昂贵的设备) 温和的加工条件:组装过程可以在生理条件下完全在水溶液中进行。这意味着不需要使用有机和/或有害的溶剂或极端的pH、离子强度和温度条件。因为生物分子不仅在非水溶液中的溶解度有限,而且非常容易失去生物活性。 史无前例的构建块来源:包括生物材料,如核酸、酶和其他蛋白质、肽、聚合物、病毒,甚至细胞,可以用来使衬底表面功能化,只要单个成分表现出互补的相互作用。 制造灵活性:大量连续的、分子均匀的和可伸缩的薄膜,以及具有精确定制的物理化学、机械和生物特性的多层表面和器件,包括多层薄膜、独立的多层膜、核壳颗粒、中空多层胶囊,甚至跨多个长度尺度的3D类组织结构。
However, notwithstanding the tremendous progress, only in the last few years the LbL assembly technology has extended well-beyond its importance for the functionalization of hard and soft inanimate charged surfaces, proving to be a suitable bottom-up strategy for functionalizing animate and dynamic surfaces, including living cells.
然而,尽管取得了巨大的进步,但仅在过去几年中,LbL 组装技术已经远远超出了其对软硬无生命带电表面功能化的重要性,证明是一种适用于功能化有生命和动态表面的自下而上策略,包括活细胞。
💡
用于衬底修饰的生物材料适用范围由无生命到活细胞
Such multilayered assemblies are intended to engineer hierarchically ordered 3D cellular architectures to emulate the complex organized structure and function of natural tissues and organs. Akashi ’s group has pioneered the research in this field by proposing the build-up of biocompatible tissue constructs comprising L929 fibroblast-based cellular multilayers and native ECM components, including cell adhesive proteins.[199] The authors have reported the use of fibronectin (FN) and gelatin (G) to prepare nanometer-size-based multilayered films on the cell surface by simply repeating the alternate immersion of a cell monolayer-modified glass substrate into FN and G aqueous solutions, under physiological conditions, using the dip-assisted LbL methodology (Figure 6A). In-between each protein deposition step, washing steps were required to remove weakly adsorbed molecules and avoid the cross-contamination of protein aqueous solutions. The successful growth of unlabeled and fluorescently labeled FN/G multilayered coatings comprising different number of layers (i.e., film thickness) was confirmed on a solid surface by employing quartz crystal microbalance (QCM) and fluorescence intensity, respectively. A linear increase in the frequency shift and fluorescence intensity was seen upon increasing the number of layers, thus indicating an increase in the thickness of the film covering the cell surface. The influence of the (FN/G)n multilayered coating on the possible build-up of 3D L929 fibroblast multilayers was assessed by confocal laser scanning microscopy (CLSM) and compared with solely FN-coated and uncoated cells.[199] It was found that, the (FN/G)n multilayered coating was homogeneous and that there was the need for at least 7 bilayers (≈6 nm film thickness, Figure 6A) and having the FN as the outermost layer (i.e., (FN/G)n/FN) to enable the adhesion of more cell layers, leading to higher order 3D fibroblast-based cellular assemblies. Furthermore, the nanofilms showed high intercellular adhesion, being easily peeled off from the glass substrate. However, the same behavior did not happen either on the single FN-coated (≈2.3 nm thick layer) or on the uncoated cells. This indicates that, after seeding the first cell monolayer, no additional cell layers could be included, irrespective of having the first cell monolayer uncoated or coated with a single FN layer. The reason behind this result is explained in light of the motifs displayed by the FN chemical structure. Although FN displays RGD moieties in its structure, such motifs are intrinsically required for regulating the adhesion of FN to the first layer of cells. Therefore, the FN per se is unable to bind to a second layer of cells, thus inhibiting the build-up of cellular multilayers.
这种多层组件旨在设计分层有序的 3D 细胞结构,以模拟自然组织和器官的复杂组织结构和功能。 Akashi 的小组通过提出建立生物相容性组织结构,包括基于 L929 成纤维细胞的细胞多层和天然 ECM 成分(包括细胞粘附蛋白),开创了该领域的研究。 [199]作者报告了使用纤连蛋白 (FN) 和明胶 (G) 通过简单地重复将细胞单层改性玻璃基板交替浸入 FN 和 G 水溶液中来在细胞表面制备基于纳米尺寸的多层膜,在生理条件下,使用浸入辅助 LbL 方法(图 6A)。在每个蛋白质沉积步骤之间,需要洗涤步骤以去除弱吸附分子并避免蛋白质水溶液的交叉污染。通过分别采用石英晶体微量天平 (QCM) 和荧光强度,在固体表面上证实了未标记和荧光标记的 FN/G 多层涂层的成功生长,该涂层包括不同的层数(即膜厚度)。随着层数的增加,频移和荧光强度呈线性增加,因此表明覆盖细胞表面的薄膜厚度增加。通过共聚焦激光扫描显微镜 (CLSM) 评估了 (FN/G)n 多层涂层对 3D L929 成纤维细胞多层可能堆积的影响,并与仅 FN 涂层和未涂层细胞进行了比较。 [199]结果发现,(FN/G)n 多层涂层是均质的,需要至少 7 个双层(≈6 nm 膜厚,图 6A)并且将 FN 作为最外层(即(FN /G)n/FN) 以实现更多细胞层的粘附,从而产生更高阶的基于 3D 成纤维细胞的细胞组装。此外,纳米膜显示出高细胞间粘附性很容易从玻璃基板上剥离。然而,在单个 FN 涂层(≈2.3 nm 厚层)或未涂层电池上都没有发生相同的行为。这表明,在接种第一细胞单层后,不能包括额外的细胞层,无论第一细胞单层是未涂覆的还是涂覆有单个FN层。这个结果背后的原因是根据 FN 化学结构显示的基序来解释的。尽管 FN 在其结构中显示 RGD 部分,但这些基序本质上是调节 FN 与第一层细胞的粘附所必需的。因此,FN 本身不能与第二层细胞结合,从而抑制细胞多层的积聚
notion image
💡
多层设计目的:设计分层有序的 3D 细胞结构,以模拟自然组织和器官的复杂组织结构和功能。 图中一层一层堆叠,ECM蛋白纳米薄膜就像胶水一样,将细胞拉伸平铺成片层,而不是细胞自组装成球。 ❓意思是FN中的RGD基序只够满足第一层细胞粘附,对于第二层就不够了是么,待看文献
Besides the development of 3D hierarchically stacked constructs encompassing multilayers of L929 fibroblast cells,[199,207] several studies in the literature recalling to the use of the FN/G biomolecular recognition for LbL assembly of different cell types have been reported.[208,209] Those artificial 3D tissuelike constructs include the fabrication of vascularized blood vessels.[210] However, the fabrication of artificial 3D tissue constructs by solely resorting to the dipping LbL methodology is quite challenging. First of all, it is a time-consuming process owing to the numerous depositions and rinsing steps. As such, it raises film stability concerns since the deposited layers might be endocytosed before the adsorption of subsequent layers. Furthermore, it requires large amounts of materials for each adsorption step, as well as solid surfaces. Moreover, the multilayered coating is very thin, showing a film thickness in the nanometer-size range. Hence, researchers have been looking for alternative deposition methodologies to process such multilayered coatings in a fast pace and, simultaneously, develop thick and more robust 3D tissue models emulating the structure and function of natural tissues. One simple methodology that has been used to significantly speedup the LbL assembly process and which does not require the use of solid substrates, is the centrifugation-assisted LbL approach in which individual cells, collected by centrifugation after trypsinization, are alternatively incubated in the native ECM proteins FN and G using centrifugation.[208] After each deposition step, the cells are rinsed with buffer solution, to remove unbound molecules, followed by centrifugation. This deposition methodology has been used to successfully develop a variety of 3D human tissue models, including liver,[211] skin,[212] and blood/ lymph-vascularized human stromal models.[213] However, the centrifugation-assisted LbL methodology requires multiple centrifugation steps to separate the cells from the adsorption protein solutions, which may damage cell membranes and reduce viability, during the build-up process. Akashi and coworkers have investigated the effect of the centrifugation cycles on cell viability and have demonstrated that after submitting the uncoated hepatocyte carcinoma (HepG2) cell line to several centrifugation steps more than 90% of the cells were nonviable. However, in the case of the (FN/G)9-coated cells, the same number of centrifugation cycles ended-up with a cell viability over than 85% and extensively reduced the leakage of cytosolic enzyme lactate dehydrogenase, showing that the LbL coating extensively protects cells from centrifugation-derived physical stress (Figure 6B).[204] Despite these findings, one should not transpose the results gathered with the HepG2 cells and FN/G multilayered coating to other cell types and LbL constituents as the cell viability might by influenced by the cell type, LbL film composition and thickness. Nevertheless, physical stress can be avoided by resorting to filtration-assisted LbL technology which assures high viability and efficiency to the FN/G coated cells. The filtration-assisted LbL methodology has been employed to engineer 3D human tissue constructs, including vascularized cardiac microtissues,[214] liver,[211] and blood vessels.[215] Using a different approach, researchers also demonstrated that the LbL assembly technology can be combined with automatic inkjet printing of single cells and ECM proteins to precisely develop 3D human microtissue chips in a rapid and automatic mode.[216] Such technology hold great potential for in vitro high-throughput preclinical drug screening, as well as to study cell–biomaterial interactions.
除了开发包含多层 L929 成纤维细胞的 3D 分层堆叠结构外,[199,207] 文献中的几项研究回顾了将 FN/G 生物分子识别用于不同细胞类型的 LbL 组装的报道。 [208,209] 那些人工3D 组织样结构包括血管化血管的制造。 [210]然而,仅依靠浸渍 LbL 方法来制造人工 3D 组织结构是非常具有挑战性的。首先,由于大量的沉积和冲洗步骤,这是一个耗时的过程。因此,由于沉积层可能在后续层的吸附之前被内吞,因此会引起膜稳定性问题。此外,每个吸附步骤都需要大量材料以及固体表面。此外,多层涂层非常薄,显示出纳米尺寸范围内的薄膜厚度。因此,研究人员一直在寻找替代沉积方法来快速处理这种多层涂层,同时开发更厚且更坚固的 3D 组织模型,以模拟天然组织的结构和功能。一种简单的方法被用来大大加快LbL的组装过程,而且不需要使用固体基质,这就是离心辅助LbL的方法,在这种方法中,在胰蛋白酶化后通过离心收集的单个细胞,使用离心法在本地ECM蛋白FN和G中进行交替孵化。[208]在每个沉积步骤之后,用缓冲溶液冲洗细胞,以去除未结合的分子,然后离心。这种沉积方法已被用于成功开发各种 3D 人体组织模型,包括肝脏、[211] 皮肤、[212] 和血液/淋巴血管化人体基质模型。 [213]然而,离心辅助 LbL 方法需要多个离心步骤以将细胞从吸附蛋白溶液中分离出来,这可能会在构建过程中损坏细胞膜并降低活力。 Akashi 和同事研究了离心循环对细胞活力的影响,并证明在将未包被的肝细胞癌 (HepG2) 细胞系进行几个离心步骤后,超过 90% 的细胞无法存活。然而,在 (FN/G)9 包被的细胞中,相同数量的离心循环最终使细胞存活率超过 85%,并大大减少了细胞溶质酶乳酸脱氢酶的泄漏,表明 LbL 涂层广泛保护细胞免受离心产生的物理压力(图 6B)。 [204]尽管有这些发现,但不应将使用 HepG2 细胞和 FN/G 多层涂层收集的结果转移到其他细胞类型和 LbL 成分,因为细胞活力可能受细胞类型、LbL 膜组成和厚度的影响。尽管如此,可以通过采用过滤辅助 LbL 技术来避免物理压力,该技术确保 FN/G 涂层细胞的高活力和效率。过滤辅助 LbL 方法已被用于设计 3D 人体组织结构,包括血管化的心脏微组织、[214] 肝脏、[211] 和血管。[215]使用不同的方法,研究人员还证明了 LbL 组装技术可以与单细胞和 ECM 蛋白的自动喷墨打印相结合,以快速和自动的模式精确开发 3D 人体微组织芯片。 [216]这种技术在体外高通量临床前药物筛选以及研究细胞-生物材料相互作用方面具有巨大潜力。
notion image
💡
浸渍 LbL 方法制造3D 分层堆叠结构挑战: 耗时:大量的沉积和冲洗步骤 膜稳定问题 材料需求大 薄 改进方向:快速处理多涂层沉积方法、更厚且更坚固的 3D 组织模型 新沉积技术:离心辅助、过滤辅助
In spite of immense reports on the fabrication of thin filmcoated cell surfaces, 3D cellular multilayers, and the establishment of human micro/macrotissue constructs by resorting to biological specific interaction between FN and G multilayers, one can also combine fibronectin with other natural ECM proteins, such as collagen,[217] or cytocompatible and negatively charged naturally occurring glycosaminoglycans, including heparin, or hyaluronic acid to modulate cell functions.[218,219] Adding to this, one could move beyond ECM proteins for cell coating, since they entail limited stability, high costs and batch-to-batch variability. Recent approaches focused on developing LbL-based multilayered micro/macrotissue constructs by resorting to a library of modular ECM-mimetic synthetic peptides, including peptide amphiphiles and multidomain peptides, comprising a repertoire of short different cell-binding motifs derived from ECM proteins. Those peptides are advantageous owing to their easy and cost-effective synthesis, biocompatibility, biodegradability, self-assembling capability into fibrillar nanostructures in aqueous media, and customized bioactivity, which turns them into suitable molecular building blocks for engineering artificial ECM-mimetic constructs to direct cell fate.[220–222] Such peptide library would encompass the widely studied FN-derived RGD and laminin-derived IKVAV (isoleucine-lysine-valine-alanine-valine) biofunctional peptide sequences, known to modulate cellular functions at the tissue and organ levels, among many others, opening new avenues in the molecular design of innovative ECM-like biomaterials for addressing a number of different tissue engineering applications.[223,224] When envisioning the assembly of dense LbL-built microtissues important aspects regarding nutrients/ oxygen availability and neo-vascularization must be considered to assure cellular viability and biofunctionality in denser microtissue constructs.
尽管关于薄膜包被细胞表面的制造、3D 细胞多层以及通过 FN 和 G 多层之间的生物特异性相互作用建立人类微/大组织结构的大量报道,人们也可以将纤连蛋白与其他天然 ECM 蛋白结合,例如胶原蛋白,[217] 或细胞相容性和带负电荷的天然存在的糖胺聚糖,包括肝素或透明质酸,以调节细胞功能。 [218,219] 除此之外,人们可以不仅限于 ECM 蛋白进行细胞涂层,因为它们带来了有限的稳定性,高成本和批次间的可变性。最近的方法侧重于开发基于 LbL 的多层微/大组织结构,方法是利用模块化 ECM 模拟合成肽库,包括肽两亲物和多域肽,包括源自 ECM 蛋白的一系列不同的短细胞结合基序。这些肽具有优势,因为它们易于合成且具有成本效益、生物相容性、生物降解性、在水性介质中自组装成纤维状纳米结构的能力以及定制的生物活性,这使它们成为合适的分子构建块,用于工程化的人造ECM模拟构建物,以指导细胞的命运。[220–222] 这种肽库将包括广泛研究的 FN 衍生的 RGD 和层粘连蛋白衍生的 IKVAV(异亮氨酸-赖氨酸-缬氨酸-丙氨酸-缬氨酸)生物功能肽序列,已知可调节组织和器官的细胞功能水平等,为创新的类 ECM 生物材料的分子设计开辟了新途径,以解决许多不同的组织工程应用。 [223,224] 当设想组装密集的 LbL 构建的微组织时,有关营养/氧气可用性和必须考虑新血管化以确保细胞活力和生物功能更密集微组织结构。
💡
FN 和 G纳米层是作为层层堆叠的 支架 ECM 蛋白进行细胞涂层缺点:有限的稳定性,高成本和批次间的可变性 措施:模块化 ECM 模拟合成肽库(只用部分有用肽段,ECM蛋白中粘附功能肽序列),易于合成且具有成本效益、生物相容性、生物降解性、在水性介质中自组装成纤维状纳米结构的能力以及定制的生物活性 这一节讨论类 ECM 生物材料的分子设计
Cell surface functionalization and LbL-based microtissues assembly, via surface engineering can also be alternatively performed by resorting to protein/polymer combinations. These mainly involve the use of collagen ECM mimetic component to functionalize cells surface. In a recent approach, researchers developed collagen type I/alginate (COL/AA)5 multilayer thin films for generating 2.5D cell sheet constructs after in vitro maturation for 4 days.[225] The underlying hypothesis for successful films assembly was based on natural collagen interaction with the cell membrane and also its electrostatic interaction with negatively charged alginate biopolymers. The intrinsic collagen cell-selective interactions and reactivity toward negatively charged biopolymers was also leveraged for individual MSCs surface functionalization with multilayered thin films. In this work the collagen type I/hyaluronan (COL/HA) multilayered film did not fully covered cells surface, this important aspect resulted in an improved cytoprotection in unfavorable suspension culture conditions, supported MSCs colony-forming ability and also their osteogenic differentiation.[226] This study is particularly relevant for bottom-up tissue engineering approaches since the assembled mesh-like film was composed of two major ECM components. Such could lay the foundation for using ECM mimetic surface functionalized MSCs as biofunctional building blocks in multiscale multicomponent cell–biomaterial assemblies in the future
通过表面工程,细胞表面功能化和基于 LbL 的微组织组装也可以通过蛋白质/聚合物组合来进行。这些主要涉及使用胶原蛋白 ECM 模拟成分来功能化细胞表面。在最近的一种方法中,研究人员开发了 I 型胶原蛋白/藻酸盐 (COL/AA)5 多层薄膜,用于在体外成熟 4 天后生成 2.5D 细胞片结构。[225]成功膜组装的基本假设是基于天然胶原蛋白与细胞膜的相互作用以及它与带负电荷的藻酸盐生物聚合物的静电相互作用。固有的胶原细胞选择性相互作用和对带负电荷的生物聚合物的反应性也被用于具有多层薄膜的单个 MSCs 表面功能化。在这项工作中,I 型胶原蛋白/透明质酸 (COL/HA) 多层膜没有完全覆盖细胞表面,这一重要方面导致在不利的悬浮培养条件下改善了细胞保护,支持了 MSCs 集落形成能力以及它们的成骨分化。 226]这项研究与自下而上的组织工程方法特别相关,因为组装的网状薄膜由两个主要的 ECM 组件组成。这可以为将来在多尺度多组分细胞-生物材料组装中使用 ECM 模拟表面功能化 MSC 作为生物功能构建块奠定基础
💡
这段讲了个啥,让我看看文献225/226
From another approach, various polymer/polymer combinations including cationic polymers have also been used for cell surface functionalization due to their electrostatically driven interaction with negatively charged cell membrane surfaces.[227] However, their use generally elicits cytotoxic effects and cell lysis, including the formation of nanosized cell membrane pores, which may result in cell death.[228–231] In addition, most polycations are known to quickly transpose the cell membrane and accumulate intracellularly, thus turning them generally useless for functionalizing the cell surface. Nevertheless, one cannot extrapolate and take this as the global picture. It is crucial to bear in mind that the propensity of the polycations to damage the cell membrane and induce cytotoxic effects on cells is strongly dependent on several properties, including polymer functional groups, concentration, molecular weight, conformation, charge density, hydrophobicity, deposition temperature and exposure time, as well as on the type of cells used.[205] This means that, depending on the assembly conditions and cell type, the same polycation can be cytotoxic or noncytotoxic to the cells, thus proving that the cell functions are extremely sensitive to the surface chemistry nature. In an attempt to mitigate polycations’ cytotoxicity and decrease the propensity to disrupt the cell membrane, other cell surface engineering approaches have emerged as promising tools for re-engineering the molecular landscapes of cell surfaces. One possibility concerns the decrease of the polycation charge density through the synthesis of block copolymers, grafting neutral polymers to polycations,[232] and further functionalization of the cell surface via electrostatic interactions. Moreover, a multilayered coating can be attempted directly on the cell surface by employing an automated filtration process, as well as exploiting the electrostatic interactions between the cationic graft copolymer and oppositely charged materials.[232,233] For instance, it has been demonstrated that poly(l-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) could be adsorbed on the cell membrane surface with minimal accumulation in the intracellular compartments, whereas PLL showed high cytotoxicity, destroyed the cell membrane, accumulated intracellularly, and decreased the cell viability.[205] The influence of the percentage of backbone lysine groups grafted to PEG chains (grafting degree) on pancreatic islet viability has been assessed after cell exposure to the copolymers. It was found that the PLL toxicity decreased while decreasing the charge density (Figure 6C). However, keeping fixed the concentration of the graft copolymer and the grafting degree, and increasing the PEG chain length led to a decrease of the PLL cytotoxicity. The authors also studied the influence of the PLL molecular weight on its cytotoxicity to cells. As expected, polycations with higher molecular weight showed higher toxicity in comparison with their lower molecular weight counterparts. Another strategy to modify the cells surface in a LbL fashion while assuring cell viability, comprises the use of PLL-g-PEGbiotin (PPB) cationic copolymer and streptavidin multilayers by exploiting the highly specific, stable, and strong biological interaction between streptavidin and biotin motifs (Figure 6D). After the electrostatic deposition of the PPB cationic copolymer onto the negatively charged cell surface, the streptavidin entity adsorbs onto it through biotin–streptavidin biospecific interactions. Moreover, since streptavidin encloses four binding sites for biotin, a biotin fraction still remains available, thus enabling the adsorption of further PPB/streptavidin layers until reaching the desired film thickness (Figure 6D). It has been demonstrated that such strategy is a very efficient and stable methodology to build-up biocompatible, PEGylated multilayer thin films on cell surfaces,[192] being an attractive methodology to control the extracellular microenvironments and regulate cell behavior. In a similar application, islet surface modification through the alternating adsorption of biospecific biotin-bovine serum albumin/streptavidin multilayers onto a hydrophobicdriven biotin-PEG-lipid functionalized lipid bilayer of the cell membrane has also been explored.[
从另一种方法来看,包括阳离子聚合物在内的各种聚合物/聚合物组合也已用于细胞表面功能化,因为它们与带负电的细胞膜表面发生静电驱动的相互作用。 [227]然而,它们的使用通常会引起细胞毒性作用和细胞裂解,包括形成纳米尺寸的细胞膜孔,这可能导致细胞死亡。 [228-231] 此外,已知大多数聚阳离子可以快速转位细胞膜并在细胞内积累,因此使它们通常对细胞表面的功能化无用。然而,人们无法推断并将其作为全球图景。重要的是要记住,聚阳离子破坏细胞膜和诱导细胞毒性作用的倾向在很大程度上取决于几个特性,包括聚合物官能团、浓度、分子量、构象、电荷密度、疏水性、沉积温度和曝光时间,以及使用的细胞类型。 [205]这意味着,根据组装条件和细胞类型,相同的聚阳离子对细胞可能具有细胞毒性或非细胞毒性,从而证明细胞功能对表面化学性质极为敏感。为了减轻聚阳离子的细胞毒性并降低破坏细胞膜的倾向,其他细胞表面工程方法已成为重新设计细胞表面分子景观的有希望的工具。一种可能性涉及通过合成嵌段共聚物、将中性聚合物接枝到聚阳离子上来降低聚阳离子电荷密度,[232] 以及通过静电相互作用进一步使细胞表面功能化。此外,可以通过采用自动过滤过程以及利用阳离子接枝共聚物和带相反电荷的材料之间的静电相互作用,直接在细胞表面上尝试多层涂层。 [232,233] 例如,已经证明聚 ( l-赖氨酸)-接枝聚(乙二醇)(PLL-g-PEG)可以吸附在细胞膜表面,在细胞内的积累最少,而PLL表现出高细胞毒性,破坏细胞膜,在细胞内积累,并且降低细胞活力。 [205]在细胞暴露于共聚物后,评估了接枝到 PEG 链上的主链赖氨酸基团百分比(接枝度)对胰岛活力的影响。发现 PLL 毒性在降低电荷密度的同时降低(图 6C)。然而,保持接枝共聚物的浓度和接枝度不变,增加PEG链长导致PLL细胞毒性降低。作者还研究了 PLL 分子量对其细胞毒性的影响。正如预期的那样,与较低分子量的对应物相比,具有较高分子量的聚阳离子显示出更高的毒性。另一种以 LbL 方式修饰细胞表面同时确保细胞活力的策略包括使用 PLL-g-PEG 生物素 (PPB) 阳离子共聚物和链霉抗生物素多层膜,利用链霉抗生物素和生物素基序之间的高度特异性、稳定和强生物相互作用(图 6D)。在 PPB 阳离子共聚物静电沉积到带负电的细胞表面后,链霉亲和素实体通过生物素-链霉亲和素的生物特异性相互作用吸附到其上。此外,由于链霉亲和素包含四个生物素结合位点,生物素部分仍然可用,因此能够进一步吸附 PPB/链霉亲和素层,直到达到所需的膜厚度(图 6D)。已经证明,这种策略是一种非常有效和稳定的方法,可以在细胞表面构建生物相容的聚乙二醇化多层薄膜,[192] 是一种控制细胞外微环境和调节细胞行为的有吸引力的方法。在类似的应用中,还探索了通过生物特异性生物素-牛血清白蛋白/链霉亲和素多层交替吸附到细胞膜的疏水驱动的生物素-PEG-脂质功能化脂质双层上来修饰胰岛表面。
 
Besides protein/protein, polymer/polymer, and protein/ polymer hybrid nanofilms generated by biomolecular recognition and electrostatic driving forces, other intermolecular interactions can also be used to drive film growth and functionalized cell surfaces. Covalent bond-based chemical approaches have also been used to coat cell surfaces using polymers functionalized with orthogonally reactive moieties. For instance, recent studies focused on the fabrication of a covalently crosslinked multilayered thin film of poly(vinyl alcohol) (PVA) by assembling thiol-modified PVA (PVA-SH) and pyridyl disulfidefunctionalized PVA (PVA-PD) multilayers on pancreatic islets surface.[235] However, before the generation of the multilayered coating, the cell membrane surface was first functionalized with maleimide reaction groups using a maleimide-PEG-functionalized phospholipid (Mal-PEG-lipid). Then, thiol-modified PVA was covalently bound to the Mal-PEG-lipid modified cell surface through thiol-ene reaction. Stable PVA-based multilayers were then generated on cells surface by sequential deposition of PVA-SH and PVA-PD multilayers via thiol-disulfide exchange reaction. This methodology has great potential for improving the transplantation of pancreatic islets (Langerhans), possibly eliminating the need for self-monitoring and insulin injection in patients with insulin-dependent diabetes mellitus (type I).
除了由生物分子识别和静电驱动力产生的蛋白质/蛋白质、聚合物/聚合物和蛋白质/聚合物杂化纳米薄膜外,其他分子间相互作用也可用于驱动薄膜生长和功能化细胞表面。基于共价键的化学方法也已用于使用用正交反应部分官能化的聚合物来涂覆细胞表面。例如,最近的研究集中在通过在胰岛表面组装硫醇改性的 PVA (PVA-SH) 和吡啶基二硫化物官能化的 PVA (PVA-PD) 多层膜来制造共价交联的聚乙烯醇 (PVA) 多层薄膜。 .[235]然而,在生成多层涂层之前,首先使用马来酰亚胺-PEG-功能化磷脂 (Mal-PEG-lipid) 用马来酰亚胺反应基团对细胞膜表面进行功能化。然后,硫醇修饰的PVA通过硫醇-烯反应共价结合到Mal-PEG-脂质修饰的细胞表面。然后通过硫醇-二硫化物交换反应顺序沉积 PVA-SH 和 PVA-PD 多层,在细胞表面生成稳定的基于 PVA 的多层。这种方法在改善胰岛移植 (Langerhans) 方面具有巨大潜力,可能消除对胰岛素依赖型糖尿病 (I 型) 患者进行自我监测和胰岛素注射的需要。
 
Moreover, similar assemblies can be developed through the sequential adsorption of other polymers via covalent bonds.[236,237] More recently, the efficient assembly of biorthogonal, covalently stabilized polymer multilayers on pancreatic islet surfaces through the sequential deposition of PEG-azide-functionalized hyperbranched alginate (ALG) biopolymer (PEG-azido-ALG) and methyl-2-diphenylphosphinoterephthalate-functionalized poly(amido amine) (MDTPAMAM) dendrimers via Staudinger ligation reaction was reported (Figure 6E).[206] These researchers also compared the assembly process by purely resorting to covalent bonds with that co-mediated by covalent bonds and electrostatic interactions by manipulating the degree of positive charge of MDTPAMAM via shielding with different amounts of glutaric anhydride (GA). The assemblies completely generated by covalent bonds showed a higher degree of surface inhomogeneity in comparison with those obtained by combining electrostatic and covalent interactions. Such behavior was assigned to the inhomogeneity of the basement coating created after the adsorption of the PEG-azide layer via NHS coupling onto pancreatic islets when compared with the coating obtained via electrostatic adsorption of PAMAM dendrimers.
此外,可以通过共价键顺序吸附其他聚合物来开发类似的组件。 [236,237] 最近,通过 PEG-叠氮化物功能化的超支化海藻酸盐的顺序沉积,在胰岛表面有效组装双正交、共价稳定的聚合物多层(ALG) 生物聚合物 (PEG-azido-ALG) 和甲基-2-二苯基膦对苯二甲酸酯官能化聚 (酰胺基胺) (MDTPAMAM) 树枝状大分子通过施陶丁格连接反应进行了报道(图 6E)。 [206]这些研究人员还通过用不同量的戊二酸酐 (GA) 屏蔽来控制 MDTPAMAM 的正电荷程度,从而比较了纯粹诉诸共价键与共价键和静电相互作用共同介导的组装过程。与通过结合静电和共价相互作用获得的组装体相比,完全由共价键生成的组装体显示出更高程度的表面不均匀性。与通过 PAMAM 树枝状大分子的静电吸附获得的涂层相比,这种行为归因于在通过 NHS 偶联将 PEG-叠氮化物层吸附到胰岛后产生的基底涂层的不均匀性。
 
 
Another very interesting approach to overcome the cytotoxicity induced by most polycations and trigger cell surface engineering concerns the development of hydrogen bonded LbL films. Inspired by this approach yeast living cell surfaces were functionalized with nonionic and biocompatible hydrogen-bonded tannic acid (TA) and poly(N-vinylpyrrolidone) (PVPON) multilayers.[238] However, before the deposition of the TA/PVPON multilayers, yeast cells were modified with a poly(ethyleneimine) (PEI) precursor layer to allow adhesion. It was found that, notwithstanding the cytotoxicity induced by the basement PEI monolayer, the assembly of at least (TA/ PVPON)3 bilayers sustained a high cell viability for at least 6 days of culture. Such behavior was expected and is the result of the low exposure of cells to toxic polycations, as well as to the highly permeable LbL shell generated by hydrogen-bonded layers. Moreover, the fact that the TA, a natural polyphenol, entails antioxidant properties and is capable of scavenging free radicals, extensively contributes to protect cells against damage. In a similar report, researchers have developed a rapid, conformal, and stable coating of various types of living pancreatic islets with hydrogen-bonded TA/PVPON[239] and TA/poly(N-vinylcaprolactam) (PVCL) multilayers,[240] under physiological conditions, aiming at treating Type 1 diabetes. It was demonstrated that the hydrogen-bonded multilayers were more effective than electrostatic-driven LbL assemblies, keeping cell viability and functionality up to 7 days in culture. Moreover, hydrogen-bonded shells showed immunomodulatory cryoprotective properties, as demonstrated by the reduced pro-inflammatory cytokine production when incubated with macrophages and diabetogenic cells.
另一种非常有趣的方法可以克服大多数聚阳离子诱导的细胞毒性并触发细胞表面工程,涉及氢键 LbL 薄膜的开发。受这种方法的启发,酵母活细胞表面被非离子和生物相容的氢键单宁酸 (TA) 和聚 (N-乙烯基吡咯烷酮) (PVPON) 多层功能化。 [238]然而,在沉积 TA/PVPON 多层之前,酵母细胞用聚 (乙烯亚胺) (PEI) 前体层进行了修饰,以允许粘附。发现尽管基底PEI单层诱导细胞毒性,但至少(TA/PVPON) 3 双层的组装在至少6天的培养中维持高细胞活力。这种行为是意料之中的,并且是细胞暴露于有毒聚阳离子以及氢键层产生的高渗透性 LbL 壳的低暴露的结果。此外,TA 是一种天然多酚,具有抗氧化特性并能够清除自由基,这一事实广泛地有助于保护细胞免受损伤。在类似的报告中,研究人员开发了一种快速、保形和稳定的各种类型的活胰岛涂层,具有氢键 TA/PVPON[239] 和 TA/聚(N-乙烯基己内酰胺)(PVCL)多层,[240]在生理条件下,旨在治疗1型糖尿病。结果表明,氢键多层膜比静电驱动的 LbL 组件更有效,可在培养中保持细胞活力和功能长达 7 天。此外,氢键外壳显示出免疫调节冷冻保护特性,正如与巨噬细胞和致糖尿病细胞一起孵育时促炎细胞因子产生减少所证明的那样。
 
Adding to macromolecular cell surface modification, other strategies exploiting cell–materials interplay, namely, nano- and microparticle–cell interactions have been investigated for bottom-up tissue engineering as it will be showcased in the following sections.
除了大分子细胞表面修饰之外,其他利用细胞-材料相互作用的策略,即纳米和微粒-细胞相互作用,已经被研究用于自下而上的组织工程,这将在以下部分中展示。

3.2 Nanoparticle Enabled Bottom-Up Assemblies(纳米粒子启用自下而上组件)

3.2.1 Nanoparticle-Coordinated Cell Clustering/Microtissue Aggregation(纳米粒子协调的细胞聚集/微组织聚集)
Nanoparticles are defined as colloidal materials with subcellular/sub-micrometer sizes ranging from 1 to 1000 nm.[241,242] In recent decades, these systems have attracted significant interest due to their numerous biomedical applications ranging from controlled delivery of hydrophilic/hydrophobic therapeutics, to multimodal bioimaging, biosensing and diagnostics.[243,244] Upto-date, functional nanosystems have been formulated from a plethora of inorganic and organic materials including synthetic block-copolymers,[245] natural origin biopolymers, and peptides/ proteins that endow them with unique bioactivity, biocompatibility, biodegradability, and chemical versatility.[246] This chemical flexibility and their high surface-to-volume ratio has been widely acknowledged and explored via precise chemical functionalization to imprint multifunctional features including cell/tissue targeting, adhesivity, and response to different stimuli.[247,248] So far, numerous types of nanoparticles have been fabricated to precisely adapt or respond to magnetic fields, temperature, ultrasound, pH/redox/hypoxic microenvironments, enzymes, light, among others.[249,250] This responsiveness may trigger changes in nanoparticles color, shape, size or originate complete disruption and prompt cargo release.[251] Adding to this, nanoparticles physicochemical properties have received significant focus due to their influence in the overall biological performance of these systems. Among these, particle size is particularly important at the nano–bio interface since multiscale interactions can be established with cells surface or intracellular organelles. Particles surface chemistry (i.e., charge, functionality, etc.) and shape (i.e., spherical, square, rod, elliptical, circular disks, etc.)[252] are too recognized to play a critical role in cellular internalization kinetics and cytotoxicity.
纳米粒子被定义为亚细胞/亚微米尺寸范围为 1 至 1000 nm 的胶体材料。 [241,242] 近几十年来,这些系统因其众多的生物医学应用而引起了极大的兴趣,范围从亲水/疏水治疗剂的受控递送,到多模态生物成像、生物传感和诊断。[243,244] 最新的功能性纳米系统由大量无机和有机材料制成,包括合成嵌段共聚物、[245] 天然来源的生物聚合物和赋予它们独特生物活性的肽/蛋白质、生物相容性、生物降解性和化学多功能性。 [246]这种化学灵活性及其高表面体积比已被广泛认可和探索,通过精确的化学功能化来印记多功能特征,包括细胞/组织靶向、粘附性和对不同刺激的响应。[247,248] 到目前为止,许多类型的纳米粒子已被制造以精确适应或响应磁场、温度、超声波、pH/氧化还原/缺氧微环境、酶、光等。[249,250] 这种响应可能触发纳米粒子颜色、形状、大小的变化或引发完全破坏和[251]除此之外,纳米粒子的物理化学性质由于它们对这些系统的整体生物性能的影响而受到了极大的关注。其中,粒径在纳米生物界面尤为重要,因为可以与细胞表面或细胞内细胞器建立多尺度相互作用。粒子表面化学(即电荷、功能等)和形状(即球形、方形、棒状、椭圆形、圆盘等)[252] 被公认为在细胞内化动力学和细胞毒性中起关键作用。
 
Owing to their physicochemical properties, nanoparticles have also been recently explored in the context of bottomup tissue engineering for promoting the assembly of cellular building blocks into higher order 3D clusters. The most recent studies have explored nanoparticles as membrane-adhesive mediators of cell aggregation or as structural supports for preformed 3D agglomerates. Different researchers have pursued this strategy in the form of either hyperbranched polyglycerols or dendrimeric intercellular linkers for rapidly forming multicellular structures.[253,254] Recently, IKVAV-functionalized polyamidoamine dendrimers coated with hyaluronic acid were used as adhesive particulates for rapidly compacting ASCs into 3D spheroid structures (Figure 7A).[255] These membrane-binding particles effectively maintained spheroids compactness in presence of competitive adhesion from tissue culture plates, while enhancing their proliferation and paracrine secretion of angiogenic factors. The potential of this nanobridging phenomenon has also been illustrated in recent applications where researchers have successfully glued together biological tissues and accelerated wound closures.[256,257] Catechol-functionalized liposomes have also been recently used to promote tissue–tissue adhesion and could be an interesting technology for bridging cell-rich 3D modules.[248] Conversely, polymeric nanoparticles adsorbed on cell membranes of spheroids can be used for slowing down spheroid spreading processes on adhesive substrates (Figure 7B).[258] Controlling spheroid fusion and compartmentalization could be an interesting feature for bottom-up bioprinting-based approaches using 3D spheroids as unitary building blocks.
由于它们的物理化学特性,最近还在自下而上组织工程的背景下探索了纳米颗粒,以促进细胞构建块组装成更高阶的 3D 簇。最近的研究已经探索了纳米粒子作为细胞聚集的膜粘附介质或作为预先形成的 3D 聚集体的结构支持。不同的研究人员以超支化聚甘油或树枝状细胞间连接体的形式采用这种策略,以快速形成多细胞结构。 [253,254] 最近,涂有透明质酸的 IKVAV 功能化聚酰胺胺树枝状大分子被用作粘合剂颗粒,用于将 ASC 快速压实成 3D 球状结构(图 7A)。 [255]这些膜结合颗粒在存在来自组织培养板的竞争性粘附的情况下有效地保持球体的致密性,同时增强它们的增殖和血管生成因子的旁分泌。这种纳米桥接现象的潜力也在最近的应用中得到了说明,研究人员成功地将生物组织粘合在一起并加速伤口闭合。[256,257] 儿茶酚功能化脂质体最近也被用于促进组织 - 组织粘附,可能是一项有趣的技术用于桥接富含细胞的 3D 模块。[248]相反,吸附在球体细胞膜上的聚合物纳米粒子可用于减缓球体在粘合剂基材上的扩散过程(图 7B)。 [258]对于使用 3D 球体作为单一构建块的自下而上生物打印方法,控制球体融合和划分可能是一个有趣的特征。
 
Attempting to explore nanoparticles for cell surface modification, Irvine’s group has developed maleimide-functionalized liposomes that readily attach to thiol groups expressed at T-cell membrane proteins.[260,261] With this approach, researchers managed to immobilize nanoparticles loaded with immunomodulatory drugs at the surface of T-cells, allowing for specialized cargo delivery to the linked T-cells and thus modulating its behavior locally.[261] More recently, smart protein nanogels that adhere to the plasma membrane were produced. These systems serve as reduction-responsive cell backpacks that release their cargo in the presence of the characteristic increase in redox activity at T-cells surfaces.[262] In terms of augmenting cell aggregation, protein–protein interactions can also drive colloidal assembly, which could be a pathway for establishing nanoenabled cell-dense modules with nanoparticulated reservoirs of bioinstructive signals.[263] On the other hand, a recent pioneering study focused on the use 20 nm carboxylated polystyrene nanoparticles as “nanostickers” capable of effectively maintaining single cells as large cohesive aggregates.[264] In this study, a cadherin-depleted S180 murine cell line characterized for its extremely poor cell– cell adhesion was used to illustrate the potential of nanostickers to glue cells together into cell-rich structures
为了探索用于细胞表面修饰的纳米颗粒,Irvine 的研究小组开发了马来酰亚胺功能化脂质体,该脂质体很容易附着在 T 细胞膜蛋白上表达的硫醇基团上。[260,261] 通过这种方法,研究人员设法将载有免疫调节药物的纳米颗粒固定在表面T 细胞,允许将专门的货物运送到连接的 T 细胞,从而在本地调节其行为。 [261]最近,生产了粘附在质膜上的智能蛋白质纳米凝胶。这些系统充当还原响应细胞背包,在 T 细胞表面氧化还原活性特征性增加的情况下释放其货物。 [262]在增强细胞聚集方面,蛋白质-蛋白质相互作用也可以驱动胶体组装,这可能是建立具有纳米颗粒生物指示信号储存器的纳米细胞致密模块的途径。[263]另一方面,最近的一项开创性研究侧重于使用 20 nm 羧化聚苯乙烯纳米粒子作为“纳米贴纸”,能够有效地将单个细胞保持为大的粘性聚集体。 [264]在这项研究中,一种以细胞-细胞粘附极差为特征的去除钙粘蛋白的 S180 鼠细胞系被用来说明纳米贴纸将细胞粘合在一起形成富含细胞的结构的潜力
 
Looking forward, advanced nanoconstructs anchored to cell membranes can extend their activity while function as bioreservoirs of small molecules/morphogens for driving stem cells differentiation or committing terminally differentiated cells to specific phenotypes. Previously, this elegant perspective of combining bioactive cell patterning and modular self-assembly was limited by a lack of affordable and efficient precision chemistry strategies. However, throughout the last decade, the maturing fields of nanotechnology, bioconjugate chemistry, and drug delivery have provided researchers with a remarkable toolbox of biodegradable/smart biomaterials, sophisticated surface modification strategies and frameworks for bioactive controlled release. With the advent of biorthogonality, emerging cellular backpacks and cutting-edge membrane-engineering strategies (e.g., glycoengineering, liposomal fusion, boronic acid, or maleimidebased chemistries), could translate to the form of scaffold-free, clickable modular assemblies containing different ratios of bioactive nanoparticles for bottom-up tissue engineering.
展望未来,锚定在细胞膜上的先进纳米结构可以扩展其活性,同时充当小分子/形态发生素的生物库,用于驱动干细胞分化或使终末分化的细胞具有特定的表型。以前,这种将生物活性细胞图案化和模块化自组装相结合的优雅观点受到缺乏经济实惠且高效的精密化学策略的限制。然而,在过去十年中,纳米技术、生物共轭化学和药物递送领域的成熟为研究人员提供了一个非凡的可生物降解/智能生物材料工具箱、复杂的表面改性策略和生物活性控制释放框架。随着双正交性的出现,新兴的细胞背包和尖端的膜工程策略(例如糖工程、脂质体融合、硼酸或马来酰亚胺基化学)可以转化为包含不同比例的无支架、可点击的模块化组件的形式。用于自下而上组织工程的生物活性纳米颗粒。
 
Adding to cell-membrane bound strategies, biomaterial- in-cell strategies using nanoparticles that are readily internalized by cells have also been explored for on-demand cell self-aggregation into engineered 3D microtissues. Specifically, PLL magnetic nanoparticles (MNPs) that immediately respond to static magnetic fields have been employed to generate magnetically levitated multicellular 3T3-L1 preadipocyte microtissues within 24 h of culture.[265] Interestingly, prolonged culture under adipogenic conditions resulted in the formation of 3D adipospheres exhibiting specific lipidic contents, thus evidencing biofunctionality. Also, levitated 3D spheroids derived from white adipose tissue (WAT) cells were able to recapitulate key aspects of WAT organogenesis. Positive and negative magnetophoresis could also be leveraged for assembling 3D cell-dense architectures (e.g., ringshaped, three-pointed star, rectangular, etc.) under different magnet configurations as it will be further discussed.[266] The use of magnetically active cells to generate 3D assemblies must however be subjected to further fundamental studies such as those already reported,[267] since our understanding of the long-term effects in cells biofunctionality and the degradation of these nanoparticles in living dynamic microtissues is still in its infancy.
除了细胞膜结合策略外,还探索了使用易于被细胞内化的纳米颗粒的细胞内生物材料策略,用于按需细胞自聚集到工程化的 3D 微组织中。具体而言,立即响应静磁场的 PLL 磁性纳米粒子 (MNP) 已被用于在培养 24 小时内产生磁悬浮的多细胞 3T3-L1 前脂肪细胞微组织。 [265]有趣的是,在脂肪形成条件下的长时间培养导致形成具有特定脂质含量的 3D 脂肪球,从而证明了生物功能性。此外,源自白色脂肪组织 (WAT) 细胞的悬浮 3D 球体能够概括 WAT 器官发生的关键方面。正磁泳和负磁泳也可用于在不同磁体配置下组装 3D 细胞密集结构(例如,环形、三尖星形、矩形等),这将进一步讨论。 [266]然而,使用磁性活性细胞生成 3D 组件必须经过进一步的基础研究,例如已经报道的那些,[267] 因为我们对细胞生物功能的长期影响和这些纳米颗粒在活的动态微组织中的降解的理解是仍处于起步阶段。
 
Even considering possible long-term effects, this technology remains highly attractive for more complex bottom-up tissue engineering. Recently, magnetic assembly was explored for precise fabrication of endothelial 3D spheroids and for their inclusion into prefabricated magnetic vascular tree-like templates. This magnetic confinement and prolonged culture induced 3D endothelial multicellular spheroids maturation and fusion into a higher order construct that exhibited morphologic and phenotypic stability.[268] The manipulation of spheroids into user-defined shapes/patterns was explored by using a disruptive approach that brought forward a paradigm shift in magnetic-based spheroid manipulation.[259] This involved the generation of Janus spheroids where cells and particles are segregated into distinct domains in a ECM-like microenvironment, aiming to reduce MNPs internalization and thereby avoid possible adverse effects on cell viability (Figure 7D). The resulting Janus constructs present lower MNPs internalization in comparison to standard spheroids and demonstrated the ability to fuse together into more complex 3D vascular tissue tube constructs via magnetic guidance.[259] It was also discovered that the strength of the magnet largely affected 3D spheroids fusion into the desired tubular shape, with constructs established with a weak magnet (i.e., 10% of maximum magnetic field) exhibiting faster inner ring contraction than their counterparts (Figure 7Di,ii).
即使考虑到可能的长期影响,这项技术对于更复杂的自下而上的组织工程仍然极具吸引力。最近,磁性组件被探索用于精确制造内皮 3D 球体并将它们包含在预制的磁性血管树状模板中。这种磁限制和延长培养诱导 3D 内皮多细胞球体成熟并融合成更高阶的结构,表现出形态和表型稳定性。 [268]通过使用一种颠覆性方法探索了将球体操纵为用户定义的形状/图案,该方法提出了基于磁性的球体操纵的范式转变。 [259]这涉及生成 Janus 球体,其中细胞和颗粒在类似 ECM 的微环境中被分离到不同的域中,旨在减少 MNP 内化,从而避免对细胞活力可能产生的不利影响(图 7D)。与标准球体相比,由此产生的 Janus 构建体呈现出较低的 MNP 内化,并证明了通过磁导融合在一起形成更复杂的 3D 血管组织管结构的能力。 [259]还发现磁铁的强度在很大程度上影响了 3D 球体融合成所需的管状形状,用弱磁铁(即最大磁场的 10%)建立的构造比它们的对应物表现出更快的内环收缩(图 7Di, ii)。
3.2.2 Bioinstructive and 3D Bioprocessed Nanoparticle-Based Assemblies(生物指导和 3D 生物加工的基于纳米粒子的组件)
Beyond engineering cells surface and operating as cellular aggregators, nanoparticles are also attractive for imparting different bioinstructive cues (e.g., growth factors, cytokines, mechanical, and electric/magnetic stimuli), further enabling engineered microtissues 3D maturation and improving biofunctionality.[269,270] Particularly, the incorporation of nanoparticles with stimuliresponsive features in bottom-up bioarchitectures development is highly valuable owing to their potential for loading different biochemical cargos and for spatiotemporally controlling biophysical signals presentation to cellular building blocks.
除了工程细胞表面和作为细胞聚集体发挥作用外,纳米粒子还具有吸引力,可提供不同的生物指导线索(例如,生长因子、细胞因子、机械和电/磁刺激),进一步使工程化微组织 3D 成熟和改善生物功能。 [269,270] 特别是,在自下而上的生物架构开发中加入具有刺激响应特征的纳米粒子是非常有价值的,因为它们具有装载不同生化货物和时空控制生物物理信号呈现给细胞构件的潜力。
 
In this context, Laponite nanosilicates (Laponite is a trademark of the company BYK Additives Ltd.) have been recently employed to generate bioinstructive gradients of different growth factors (e.g., VEGF, FGF, and PDGF) for promoting endothelial sprouting, or for establishing osteochondral interfaces in cell–biomaterial assemblies (via rhBMP-2 and TGF-β3).[272,273] In another elegant approach, researchers have exploited the potential of magneto-responsive nanoparticles for patterning biochemical gradients (i.e., BMP-2) in human MSCs–agarose scaffolds and established robust osteochondral constructs in vitro.[274] Strikingly, this strategy resulted in spatially controlled osteogenic gene expression and tissue mineralization, as well as the formation of a bone–cartilage interface after 28 days of maturation in vitro. Apart from magnetism, temperature and light (e.g., visible, near-infrared, etc.) also represent promising alternatives for on-demand generation of gradients of bioinstructive molecules that ultimately guide cell differentiation and modulate 3D microtissues physiology in vitro.[275–277] Recently, mechanoresponsive nanoparticles have too been formulated to provide bioactive molecules presentation upon deformation by biomechanical forces, thus unlocking the possibility to engineer constructs with biomechano-interactive signals similar to those naturally present in living tissues.[278] These studies represent a stepping stone in highlighting the versatility of stimuliresponsive nanoparticles for providing biochemical gradients in tissue-scale constructs, evidencing possible future trends in this field
在这种情况下,Laponite 纳米硅酸盐(Laponite 是 BYK Additives Ltd. 公司的商标)最近已被用于生成不同生长因子(例如 VEGF、FGF 和 PDGF)的生物指导梯度,以促进内皮发芽或建立骨软骨。细胞-生物材料组装中的界面(通过 rhBMP-2 和 TGF-β3)。[272,273] 在另一种优雅的方法中,研究人员利用磁响应纳米粒子在人类 MSC 中形成生化梯度(即 BMP-2)的潜力——琼脂糖支架并在体外建立了健壮的骨软骨结构。 [274]引人注目的是,这种策略导致了空间控制的成骨基因表达和组织矿化,以及在体外成熟 28 天后形成骨 - 软骨界面。除了磁性,温度和光(例如,可见光、近红外光等)也代表了按需生成生物指导分子梯度的有希望的替代方案,这些梯度最终指导细胞分化并在体外调节 3D 微组织生理学。[275-277 ] 最近,机械响应纳米粒子也被配制为在生物力学力变形时提供生物活性分子呈现,从而开启了设计具有类似于活组织中天然存在的生物机械相互作用信号的结构的可能性。 [278]这些研究代表了突出刺激响应纳米粒子在组织尺度结构中提供生化梯度的多功能性的垫脚石,证明了该领域可能的未来趋势
 
Adding to their transported bioactive cargo, nanomaterials’ physicochemical features can also be exploited as modulation mechanisms to develop and mature on-demand 3D microtissues with complex biofunctionality. This has been the case of load-bearing and complex electroactive tissues (e.g., cardiac, nerve, and skeletal muscle).[279] In this regard, several electrically conductive nanomaterials, such as graphene, carbon nanotubes, and silicon/gold nanowires, provided promising outcomes in cardiac tissue engineering.[280,281] By impregnating gold nanowires in alginate scaffolds researchers were able to enhance the electrical interconnectivity of engineered cardiac 3D microtissues and improve cardiomyocytes phenotype, expression of contractile function markers and ability to generate synchronous contractions.[282] More recently, incorporation of silicon nanowires in human induced pluripotent stem-cell-derived cardiomyocytes enabled the assembly of electrically conductive cardiac 3D spheroids with enhanced cell–cell junctions, contractile machinery maturation, and decreased spontaneous beat rate, which could be beneficial for reducing arrhythmia post-transplantation.[283] Also, nanoparticles comprising conducting polymers (e.g., polypyrrole) were employed to trigger biomolecules delivery upon stimulation with weak external electrical fields, that are known to impact cell processes in angiogenesis, cardiomyogenesis, neurogenesis, and osteogenesis and could thus enable on-demand microtissue maturation along time.[28
除了运输的生物活性货物外,纳米材料的物理化学特性还可以作为调节机制来开发和成熟具有复杂生物功能的按需 3D 微组织。承重和复杂的电活性组织(例如心脏、神经和骨骼肌)就是这种情况。 [279]在这方面,几种导电纳米材料,如石墨烯、碳纳米管和硅/金纳米线,在心脏组织工程中提供了有希望的成果。 [280,281] 通过在海藻酸盐支架中浸渍金纳米线,研究人员能够增强工程的电互连性。心脏 3D 微组织和改善心肌细胞表型、收缩功能标志物的表达和产生同步收缩的能力。[282]最近,在人类诱导的多能干细胞衍生的心肌细胞中加入硅纳米线能够组装具有增强的细胞-细胞连接、收缩机械成熟和降低自发搏动率的导电心脏 3D 球体,这可能有利于减少心律失常[283]此外,包含导电聚合物(例如,聚吡咯)的纳米颗粒被用于在用弱外部电场刺激时触发生物分子递送,已知其会影响血管生成、心肌生成、神经发生和成骨中的细胞过程,因此可以实现按需微组织成熟随着时间的推移。 [28
 
Notwithstanding their potential for bottom-up tissue engineering, most of these studies describe the use of overly simplistic nanoparticle containing scaffolds, being unable to fully recapitulate native ECM composition, nor tissues complex architecture or anatomical scale. T o overcome such drawbacks, researchers are actively developing nanoparticle functionalized bioinks and exploiting advanced additive manufacturing techniques to build-up 3D microtissue constructs with tailored microenvironments allied to biospecific designs.[
尽管它们具有自下而上组织工程的潜力,但这些研究中的大多数描述了使用过于简单的含有纳米颗粒的支架,无法完全概括天然 ECM 组成,也无法完全概括组织复杂结构或解剖规模。为了克服这些缺点,研究人员正在积极开发纳米颗粒功能化生物墨水,并利用先进的增材制造技术来构建具有与生物特异性设计相关的定制微环境的 3D 微组织结构。
 
Nanoparticles incorporation in bioinks is highly valuable as it can improve the mechanical performance of natural-based biomaterials (e.g., gelatin and fibrin)[286] and allows bioactive cues’ tailored presentation, as well as to introduce electrical properties in the final assemblies.[286,287] Interestingly, it is being increasingly recognized that nanoparticles inclusion in bioinks also improves shear-thinning, a fundamental aspect for enhancing printability and resolution (Figure 8A).[288,289] From the plethora of nanomaterials currently being pursued in 3D nano-bioprinting strategies, Laponite nanoparticles are widely explored due to their innate bioactivity (i.e., osteogenic/ angiogenic), mechanical resistance, and sustained delivery of bioinstructive signals (e.g., growth factors).[290,291] Recent evidences corroborate that Laponite nanosilicates incorporation in PEG-based photocrosslinkable bioinks enabled sustained VEGF delivery which directed rapid HUVECs migration toward 3D bioprinted constructs.[292] Such nanoengineered Laponite/PEGdiacrylate bioinks displayed improved shear-thinning properties, high mechanical stability, increased printing fidelity, and suitable cytocompatibility post-crosslinking.[293] An improvement to this design was achieved by incorporating nanosized Laponite in GelMA/к-carrageenan and exploiting nanoengineered ionic covalent entanglement (NICE) in a bioink with innate bioactivity (i.e., GelMA cell adhesive domains).[294] With this synergistic approach, it was possible to bioprint large vertical structures and different human-scale 3D anatomical structures with improved mechanical strength, toughness and elasticity (Figure 8B). Cells laden in such bioprinted constructs also maintained high cell viability over 120 days, indicating the potential of this approach for long-term bottom-up tissue engineering applications.
在生物墨水中掺入纳米粒子非常有价值,因为它可以提高天然生物材料(例如明胶和纤维蛋白)的机械性能[286],并允许生物活性线索的定制呈现,以及在最终组件中引入电特性。 286,287] 有趣的是,人们越来越认识到,生物墨水中包含的纳米颗粒还可以提高剪切稀化性,这是提高可打印性和分辨率的一个基本方面(图 8A)。[288,289] 从目前在 3D 纳米生物打印策略中追求的大量纳米材料来看, Laponite 纳米颗粒因其先天的生物活性(即成骨/血管生成)、机械阻力和生物指示信号(例如生长因子)的持续传递而被广泛探索。 [290,291] 最近的证据证实 Laponite 纳米硅酸盐掺入基于 PEG 的光交联bioinks 实现了持续的 VEGF 递送,从而引导 HUVEC 快速迁移到 3D b [292] ioprinted 构造。这种纳米工程的 Laponite/PEG 二丙烯酸酯生物墨水显示出改进的剪切稀化性能、高机械稳定性、提高的印刷保真度和合适的细胞相容性后交联。 [293]通过在 GelMA/к-角叉菜胶中加入纳米尺寸的 Laponite 并在具有先天生物活性的生物墨水(即 GelMA 细胞粘附域)中利用纳米工程离子共价纠缠 (NICE),实现了对这一设计的改进。 [294]通过这种协同方法,可以生物打印大型垂直结构和不同的人体尺度 3D 解剖结构,并提高机械强度、韧性和弹性(图 8B)。装载在这种生物打印结构中的细胞在 120 天内也保持了高细胞活力,表明这种方法在自下而上的长期组织工程应用中的潜力。
 
Other silica-based nanoparticles with cationic surface charge have been exploited to improve the printability and shape fidelity of anionic polysaccharide bioinks (i.e., alginate/ gellan gum) via the establishment of electrostatic interactions. This approach resulted in enhanced mechanical robustness of large-scale ear-shaped 3D constructs and high cell viability. Importantly, the observed mechanical improvement was highly dependent on polymers molecular weight, nanoparticles surface chemistry, concentration and size, being mainly observed for particles (<100 nm).[298] Such indicates that various parameters must be carefully investigated to achieve optimal mechanical properties of printed constructs always taking as reference those of the native tissues one aims to recapitulate.[299
其他具有阳离子表面电荷的二氧化硅基纳米颗粒已被开发用于通过建立静电相互作用来提高阴离子多糖生物墨水(即藻酸盐/结冷胶)的可印刷性和形状保真度。 这种方法提高了大型耳形 3D 结构的机械强度和高细胞活力。重要的是,观察到的机械改进高度依赖于聚合物分子量、纳米颗粒表面化学、浓度和尺寸,主要观察到颗粒(<100 nm)。 [298]这表明,必须仔细研究各种参数,以实现印刷结构的最佳机械性能,始终以旨在概括的天然组织为参考。 [299
 
Recently, the use of inorganic nanoparticles to endow cellladen bioinks with electric conductivity has been explored for materialized 3D bioprinted constructs for application in cardiac tissue engineering. In this context, researchers explored the development of an electroactive bioink comprising inorganic gold nanorods (34 × 25 nm) and GelMA hydrogel. Gold nanoparticles inclusion improved bioink shear-thinning properties and printability, while also enhanced cardiac cell adhesion/organization versus its pristine GelMA counterpart (Figure 8C).[295] In addition, such gold nanocomposite bioink could install electroconductive bridges connecting adjacent cardiac bundles and promoted electrical communication in 3D printed constructs.
This resulted in increased cell–cell interactions, cardiac phenotypic expression as well as synchronized contractile frequency of bioprinted cardiac constructs (Figure 8C). Similarly, an alginate-based nanostructured bioink with embedded silver nanoparticles was used for bioprinting chondrocytes into 3D bionic ears, which could successfully receive electromagnetic signals (Figure 8D).[296] These are highly elegant approaches to generate electroactive microtissue constructs, nevertheless their in vivo applicability and long-term biocompatibility in cardiac microenvironment is an important aspect to be further evaluated.
最近,已经探索了使用无机纳米粒子来赋予载有细胞的生物墨水导电性,以用于在心脏组织工程中应用的物化 3D 生物打印结构。在这种情况下,研究人员探索了一种由无机金纳米棒(34 × 25 nm)和 GelMA 水凝胶组成的电活性生物墨水的开发。与原始 GelMA 对应物相比,包含金纳米粒子改善了生物墨水的剪切稀化特性和可印刷性,同时还增强了心脏细胞的粘附/组织(图 8C)。 [295]此外,这种金纳米复合生物墨水可以安装连接相邻心脏束的导电桥,并促进 3D 打印结构中的电通信。这导致细胞间相互作用、心脏表型表达以及生物打印心脏结构的同步收缩频率增加(图 8C)。同样,嵌入银纳米粒子的基于海藻酸盐的纳米结构生物墨水用于将软骨细胞生物打印到 3D 仿生耳中,这可以成功接收电磁信号(图 8D)。 [296]这些是生成电活性微组织结构的非常优雅的方法,但它们的体内适用性和在心脏微环境中的长期生物相容性是有待进一步评估的重要方面。
 
Adding to this, magnetic iron nanoparticles were exploited to recapitulate the anisotropy of human cartilage in bottomup engineered 3D constructs.[300] Such nanomaterials have been used to direct collagen alignment during bioprinting, thus enabling the fabrication of multilayered chondrocyteladen constructs with intercalating layers of aligned/random collagen fibers. Interestingly, bioprinting of such constructs led to enhanced collagen I and II expression, highlighting the importance of architectural control when envisioning to recapitulate intrinsically anisotropic human tissues in bottom-up engineered cell–biomaterial assemblies.[300] This attention on faithfully recapitulating tissues complex architecture using nano particles in the bioprinting process was further demonstrated by the inclusion of melanin nanoparticles (≈500 nm) in a silk fibroin/PEG-acrylate nanoengineered bioink. In this elegant strategy melanin nanoparticles innate light absorption was hypothesized to improve light-induced 3D bioprinting resolution in the z-axis while assuring embedded NIH/3T3 fibroblasts viability.[297] By reducing light penetration depth, nanoparticles enabled 3D projection stereolithography bioprinting of otherwise impracticable empty/tilted structures such as tubes or stairs, and enabled the fabrication of fully perfusable vascular networks with high printing precision (Figure 8E).
除此之外,磁性铁纳米粒子被利用来概括人体软骨在自下而上的工程 3D 构造中的各向异性。 [300]这种纳米材料已被用于在生物打印过程中指导胶原蛋白排列,从而能够制造具有插入层的排列/随机胶原纤维的多层软骨细胞结构。有趣的是,这种结构的生物打印导致胶原蛋白 I 和 II 表达增强,在设想在自下而上的工程细胞-生物材料组件中概括本质各向异性的人体组织时,突出了结构控制的重要性。 [300]通过在丝素蛋白/PEG-丙烯酸酯纳米工程生物墨水中加入黑色素纳米颗粒(≈500 nm),进一步证明了这种在生物打印过程中使用纳米颗粒忠实再现组织复杂结构的关注。在这个优雅的策略中,假设黑色素纳米粒子先天的光吸收可以提高 z 轴上光诱导的 3D 生物打印分辨率,同时确保嵌入的 NIH/3T3 成纤维细胞的活力。 [297]通过减少光穿透深度,纳米粒子能够对原本不切实际的空/倾斜结构(如管或楼梯)进行 3D 投影立体光刻生物打印,并能够制造具有高打印精度的完全可灌注血管网络(图 8E)。
 
In practice, the described bottom-up engineering technologies that are based on, or include nanomaterials, are envisioned to assist researchers in modulating mechanical properties and the local biochemical microenvironment/mechanical cues, allowing one to better guide living microtissues morphogenesis and maturation during in vitro culture before in vivo application. Advances in cell-membrane-functionalized nanoparticles,[301] may further contribute for selective particle–cell docking and for a higher control over cell–cell spatial patterning in cocultured 3D aggregates in a foreseeable future. Adding to these opportunities, it has been recently demonstrated that nanoparticles could potentially function as nanosensors for monitoring the early immune response to implanted tissue engineered constructs,[302] or for mapping oxygen distribution/dynamics within 3D bioprinted constructs.[303] Generating microtissues with built-in biocompatible nanosensors could be essential for further understanding and noninvasively monitor the physiological changes upon their implantation in real-time.
在实践中,所描述的基于或包括纳米材料的自下而上工程技术旨在帮助研究人员调节机械性能和局部生化微环境/机械线索,从而更好地指导活体微组织在体外的形态发生和成熟体内应用前的培养。在可预见的未来,细胞膜功能化纳米粒子[301] 的进展可能会进一步促进选择性粒子-细胞对接和对共培养 3D 聚集体中细胞-细胞空间模式的更高控制。除了这些机会之外,最近还证明,纳米颗粒可能会用作纳米传感器,用于监测对植入的组织工程结构的早期免疫反应,[302] 或用于绘制 3D 生物打印结构内的氧气分布/动力学。 [303]生成具有内置生物相容性纳米传感器的微组织对于进一步了解和无创实时监测其植入后的生理变化至关重要。

3.3 Microparticle Enabled Bottom-Up Assemblies(微粒启用自下而上组件)

3.3.1 Microparticle-Coordinated Cell Clustering/Microtissue Aggregation(微粒协调的细胞聚集/微组织聚集)
Microparticles, i.e., structures ranging from 1 to 1000 µm, have for long been the platform of choice for various biomedical applications,[304,305] with numerous reports exploring microcarrier formulations for focal delivery and controlled release of therapeutics, as injectable tissue-defect fillers, as biosensing tools, or as cell-expansion systems in static/dynamic in vitro cultures.
微粒,即从 1 到 1000 µm 的结构,长期以来一直是各种生物医学应用的首选平台,[304,305] 有许多报道探索微载体制剂作为可注射的组织缺陷填充剂用于局部递送和控制释放治疗剂,作为生物传感工具,或作为静态/动态体外培养中的细胞扩增系统。
 
Along the last decades, the exponential evolution of precision particle fabrication techniques (i.e., electrodynamic jetting, molding/microarrays,[308] or microfluidics)[309,310] has contributed for improving the manufacture of microparticles with tailored surface chemistry, degradation and porosity.[311] Particulates with variable surface topography, stiffness, tunable size, and complex shapes have also been successfully engineered.[312,313] This technological progress, combined with particles physicochemical versatility, have provided the foundation for also exploring microparticles as injectable cell-encapsulating platforms and for in vitro disease modeling.[84,314] More recent endeavors have focused on exploring microparticles as building blocks for modular bottom-up tissue engineering by taking advantage of their role as orchestrators of cellular aggregation and of their bioinstructive cues for 3D microtissues maturation.[306,311,315] We will focus on cell–particle surface interactions at the material–bio interface rather than cell encapsulation which will be further discussed in hydrogel-based platforms.
在过去的几十年中,精密粒子制造技术(即电动喷射、模塑/微阵列、[308] 或微流体)[309,310] 的指数级发展有助于改进具有定制表面化学、降解和孔隙率的微粒的制造。第311章]具有可变表面形貌、刚度、可调尺寸和复杂形状的颗粒也已成功设计。[312,313] 这一技术进步与颗粒物理化学的多功能性相结合,为探索微粒作为可注射细胞封装平台和在体外疾病建模。[84,314] 最近的努力集中在探索微粒作为模块化自下而上组织工程的构建块,利用它们作为细胞聚集协调器的作用及其对 3D 微组织成熟的生物指导线索。[306,311,315] 我们将关注材料-生物界面处的细胞-颗粒表面相互作用,而不是细胞封装,这将在基于水凝胶的平台中进一步讨论。
 
In this sense, the establishment of cell–microparticle unitary blocks and their progression into modular 3D aggregates has been materialized by using cell-scaled solid microparticles as supporting/adhesive platforms (i.e., >2 µm to several hundred micrometers), as opposite to smaller particles which may be extensively internalized by cells when no cell-membrane anchoring technology is installed.[315] The control over microparticle–cell aggregates size and morphology is key when envisioning 3D microtissues build-up and is highly dependent on microparticle formulations monodispersity,[316] cell density,[84] and culture conditions (i.e., static/dynamic).[317] 3D cell–microparticle assemblies biointegration and overall biofunctionality is also vital in the context of bottom-up tissue engineering and recognized to be largely influenced by: i) cells and microparticles spatial distribution/density, ii) the existence of cell–particle anchoring ligands (i.e., antibodies, ECM mimetic proteins/ biopolymers, etc.),[305] and iii) the presence of bioinstructive morphogens (e.g., growth factors, cytokines, etc.).[318] These fundamental design considerations and processing know-how have enabled researchers to fabricate 3D constructs where particle–cells adhesion is random or directed.[319] Both approaches can warrant the application of bioengineered microtissues in bottom-up tissue engineering and regenerative medicine.
从这个意义上说,通过使用细胞尺度的固体微粒作为支撑/粘附平台(即 > 2 µm 到几百微米),已经实现了细胞-微粒整体块的建立及其向模块化 3D 聚集体的发展,这与较小的当没有安装细胞膜锚定技术时,这些颗粒可能会被细胞广泛内化。 [315]在设想 3D 微组织构建时,对微粒 - 细胞聚集体大小和形态的控制是关键,并且高度依赖于微粒制剂的单分散性、[316] 细胞密度、[84] 和培养条件(即静态/动态)。 [317 ] 3D 细胞-微粒组装体的生物整合和整体生物功能在自下而上的组织工程中也很重要,并且被认为在很大程度上受以下因素的影响:i) 细胞和微粒的空间分布/密度,ii) 细胞-粒子锚定配体的存在 (即抗体、ECM 模拟蛋白/生物聚合物等),[305] 和 iii) 存在生物指导性形态发生素(例如,生长因子、细胞因子等)。 [318]这些基本的设计考虑和加工技术使研究人员能够制造 3D 结构,其中粒子-细胞粘附是随机的或定向的。 [319]这两种方法都可以保证生物工程微组织在自下而上的组织工程和再生医学中的应用。
 
Random cellular adhesion to microfabricated spherical particles is by far the most explored alternative owing to its simplicity, low cost, and possibility to produce dense 3D microtissues which guide cell fate.[320] Using this concept, researchers have explored gelatin and heparin microparticles for loading BMP-4/noggin bioactive molecules and to support the establishment of pluripotent stem cell agglomerates in vitro. During culture, the controlled release of soluble mediators actively bioinstructed 3D cellular aggregates toward specific phenotypes, thus demonstrating the advantages of using microparticles as cell-adhesive and delivery platforms.[321] In a similar approach, the controlled release of TGF-β1 from gelatin microparticles impregnated in human-periosteum-derived cells (hPDCs) micromasses induced significant cellular differentiation toward chondrogenic lineage and the expression of chondrogenic biomarkers.[322] Microparticle-guided 3D microtissues random assembly was also recently explored through the fabrication of surface-decorated microparticles with human E-cadherin fusion protein cell–cell adhesion biomimetic ligands that improved cells proliferation and formation of dense MSCsrich 3D aggregates (Figure 9A).[323] However, when envisioning in vitro generated 3D microtissues implantation, the establishment of highly dense constructs is generally deleterious due to decreased oxygen/nutrients diffusion. Recent efforts have been made toward surpassing these issues through the development of VEGF165-functionalized microcarriers, or of oxygen releasing microparticles that increased the viability of 3D cellular masses cultured in microparticulated platforms.[324,325] The latter is a particularly elegant approach that has proven valuable for providing a timely supply of oxygen to microparticle adhered human-periosteal-derived cells which preserved their osteogenic differentiation even under hypoxia.[3
由于其简单、低成本和产生指导细胞命运的致密 3D 微组织的可能性,随机细胞粘附到微制造的球形颗粒是迄今为止探索最多的替代方法。 [320]利用这一概念,研究人员探索了用于装载 BMP-4/头蛋白生物活性分子的明胶和肝素微粒,并支持在体外建立多能干细胞团块。在培养过程中,可溶性介质的受控释放主动生物指导 3D 细胞聚集体朝向特定表型,从而展示了使用微粒作为细胞粘附和递送平台的优势。 [321]在类似的方法中,TGF-β1 从浸渍在人骨膜衍生细胞 (hPDC) 微团中的明胶微粒中的受控释放诱导显着的细胞分化为软骨形成谱系和软骨形成生物标志物的表达。 [322]微粒引导的 3D 微组织随机组装最近也通过制造表面修饰的微粒与人类 E-钙粘蛋白融合蛋白细胞-细胞粘附仿生配体进行了探索,该配体改善了细胞增殖和致密 MSCsrich 3D 聚集体的形成(图 9A)。 [323 ]然而,当设想体外生成的 3D 微组织植入时,由于氧/养分扩散减少,高密度结构的建立通常是有害的。最近通过开发 VEGF165 功能化微载体或释放氧气的微粒来解决这些问题,这些微载体增加了在微粒平台中培养的 3D 细胞团的活力。[324,325] 后者是一种特别优雅的方法,已被证明是有价值的。为微粒粘附的人骨膜衍生细胞提供及时的氧气供应,即使在缺氧条件下也能保持其成骨分化。
 
Adding to these technologies, open porous microparticle platforms have also received a significant focus for 3D microtissues assembly owing to their improved gases/nutrients and waste metabolites exchange with the surrounding microenvironment. Recently microporous particles technology was advanced with the fabrication of highly open porous polyhydroxyalkanoate (PHA) microspheres (OPMs; 300–360 µm in diameter, Figure 9B), which are able to harbor stem cells in their interconnected network while also assuring a higher cell viability and continuous proliferation in comparison to their less porous counterparts.[3
除了这些技术之外,开放式多孔微粒平台也因其改进的气体/营养物质和废物代谢物与周围微环境的交换而受到了 3D 微组织组装的关注。最近,微孔颗粒技术得到了进步,制造了高度开放的多孔聚羟基链烷酸酯 (PHA) 微球 (OPM;直径 300–360 µm,图 9B),这些微球能够在相互连接的网络中容纳干细胞,同时确保更高的细胞活力
 
Aiming to further control microtissues shape, researchers used microarray platforms to promote the fusion of cell– particle microaggregates as an attempt to generate geometrically defined higher order assemblies.[320] This pooling and spatial confinement resulted in the bottom-up establishment of macrosized and shape defined tissue constructs (Figure 9C). Programmed particle–cell microagglomerates confinement and directed assembly into larger assemblies can also be established via magnetism, sound, mechanical forces, and light.
为了进一步控制微组织的形状,研究人员使用微阵列平台来促进细胞-颗粒微聚集体的融合,以尝试生成几何定义的高阶组件。 [320]这种汇集和空间限制导致自下而上建立宏观尺寸和形状定义的组织结构(图 9C)。程序化的粒子-细胞微团聚体限制和定向组装成更大的组装体也可以通过磁力、声音、机械力和光来建立。
 
Despite these exciting advances, assuring a precise control over cells adhesion in specific microparticle regions remains remarkably challenging. While the dynamic nature of microparticles–cells interactions and aggregations allows researchers to explore ex vivo 3D microtissues assembly, due to its underlying concepts such interactions are inevitably random and with limited control over cell-specific adhesion. Recent studies have reported exciting results on the development of microparticles displaying anisotropic/heterogenic regions for programmed/guided cell adhesion. In particular, spatially designed cellular microenvironments in spherical particles volume have been generated by using segmented microcapillaries to eject microdroplets containing multiple types of collagen and sodium alginates.[328,329] This resulted in the fabrication of anisotropic microspheres with hemispheres containing two ECM microenvironments with different mechanical properties. On another approach, biomimetic anisotropic PCL particles (≈70 µm) exhibiting fuzzy and smooth surfaces in either side were used to selectively adhere fibroblasts and endothelial cells (Figure 9D). In vitro cell culture of endothelial cells added stepwise to Janus particles smooth side, induced different prostacyclin secretion by endothelial cells. These particles demonstrated higher affinity toward fibroblasts as opposite to hepatocytes, opening new avenues for cell isolation based solely on particles morphological features.[330] Selective cells isolation in antibody-functionalized microparticles has also been successfully demonstrated, further contributing toward the toolbox of available approaches for biospecific control over cell–particle adhesion.[314] In the long-run such strategies can be valuable for assembly of heterogeneous microtissues in which the build-up process is self-regulated by cells spatial distribution on particles surface. One could hypothesize that combining this approach with genetic cell surface engineering could yield living constructs with bioregulated architectures.
尽管取得了这些令人兴奋的进展,但确保精确控制特定微粒区域中的细胞粘附仍然非常具有挑战性。虽然微粒-细胞相互作用和聚集的动态特性使研究人员能够探索离体 3D 微组织组装,但由于其基本概念,这种相互作用不可避免地是随机的,并且对细胞特异性粘附的控制有限。最近的研究报告了关于开发显示各向异性/异质区域用于程序化/引导细胞粘附的微粒的令人兴奋的结果。特别是,通过使用分段微毛细管喷射含有多种类型的胶原蛋白和海藻酸钠的微滴,在球形颗粒体积中产生了空间设计的细胞微环境。[328,329] 这导致制造了各向异性微球,其半球含有两个具有不同机械性能的 ECM 微环境特性。在另一种方法中,仿生各向异性 PCL 颗粒 (≈70 µm) 在任一侧表现出模糊和光滑的表面,用于选择性地粘附成纤维细胞和内皮细胞 (图 9D)。体外细胞培养的内皮细胞逐步加入Janus颗粒光滑面,诱导内皮细胞分泌不同的前列环素。与肝细胞相反,这些颗粒对成纤维细胞表现出更高的亲和力,为仅基于颗粒形态特征的细胞分离开辟了新途径。 [330]抗体功能化微粒中的选择性细胞分离也已成功证明,进一步促进了用于生物特异性控制细胞-颗粒粘附的可用方法的工具箱。 [314]从长远来看,这种策略对于异质微组织的组装可能很有价值,其中构建过程是由颗粒表面上的细胞空间分布自我调节的。可以假设将这种方法与遗传细胞表面工程相结合可以产生具有生物调节结构的活体结构。
 
 
3.3.2. Bioinstructive and 3D Bioprocessed Microparticle-Based Assemblies(生物指导和 3D 生物加工微粒基组件)
As aforementioned, it is well established that the orchestrated presentation of different bioinstructive cues (e.g., growth factors, cytokines, mechanical, magnetic/electric, etc.), either via their spatiotemporally controlled presentation or in the form of biochemical gradients, is also essential for providing a close-to native microenvironment and further potentiating engineered microtissue maturation in vitro.[331] In this sense, besides functioning as building blocks for cellular aggregation and microtissues maturation, microparticles have also been employed as delivery systems for controlled release of bioactive molecules in bottom-up cell–biomaterial assemblies. This strategy has been successful in guiding the fate of microparticle-adhered cell unitary blocks, or through incorporation in cell-laden bioinks. The latter is particularly valuable, since the direct incorporation of growth factors in bioinks results in rapid diffusion, often reducing bioactive molecules overall concentration comparing to that achieved with sustained presentation via microparticle-mediated controlled delivery.[332] Researchers have explored these microparticles features for instance by incorporating gelatin microparticles loaded with either VEGF or BMP-2 into bioinks for achieving accelerated osteodifferentiation and regional angiogenesis on bioprinted 3D living constructs with well-defined architecture.[333,334] Adding to this, microparticles loaded with growth factor/cytokine rich cell-derived secretomes have also been employed as bioinstructive building blocks and are currently being envisioned for potentiating advanced 3D bioprinting strategies in the future.[3
如前所述,众所周知,不同生物指导线索(例如,生长因子、细胞因子、机械、磁/电等)的协调呈现,无论是通过它们的时空控制呈现还是以生化梯度的形式,也是必不可少的用于提供接近天然的微环境并进一步促进体外工程化微组织成熟。 [331]从这个意义上说,除了作为细胞聚集和微组织成熟的基石外,微粒还被用作自下而上的细胞-生物材料组件中生物活性分子的受控释放的递送系统。该策略已成功指导微粒粘附的细胞单元块的命运,或通过掺入载有细胞的生物墨水中。后者特别有价值,因为在生物墨水中直接掺入生长因子会导致快速扩散,与通过微粒介导的控制递送持续呈现所达到的浓度相比,通常会降低生物活性分子的总浓度。 [332]研究人员已经探索了这些微粒的特性,例如,通过将装载有 VEGF 或 BMP-2 的明胶微粒加入生物墨水中,以在具有明确结构的生物打印 3D 活体结构上实现加速骨分化和区域血管生成。 [333,334] 此外,装载有富含生长因子/细胞因子的细胞衍生分泌物也已被用作生物指导性构建块,目前正被设想用于在未来增强先进的 3D 生物打印策略。
 
In addition, to biochemical signals, the inclusion of mechanical cues in bottom-up engineered constructs via microparticles inclusion was also fruitfully demonstrated in recent works. An elegant approach, involved MSC-laden PLA microparticles embedding within GelMA-gellan gum bioinks, functioning as unitary building blocks for providing both cellular components and mechanical reinforcement. This approach increased up to twofold the compression modulus of bioprinted 3D constructs.[336] On a different setup, β-tricalcium phosphate microparticle incorporation were used for tuning 3D constructs stiffness,[337] as well as to induce osteodifferentiation and mimicking the mineral fraction present in calcified cartilage.
此外,对于生化信号,最近的工作也卓有成效地证明了通过微粒包含在自下而上的工程结构中包含机械线索。一种优雅的方法是将载有 MSC 的 PLA 微粒嵌入 GelMA-结冷胶生物墨水中,作为提供细胞成分和机械增强的单一构件。这种方法将生物打印 3D 结构的压缩模量提高了两倍。 [336]在不同的设置中,β-磷酸三钙微粒掺入用于调整 3D 构建体的刚度,[337] 以及诱导骨分化和模拟钙化软骨中存在的矿物质部分。
 
The inclusion of cell-laden microparticles in bioinks developed for advanced 3D biofabrication adds a layer of processability to these building blocks and allows the engineering of microparticle-based living constructs with biospecific tissue designs that would be otherwise difficult to obtain through other bottom-up processing technologies. However, it is important to emphasize that including dense polymeric microparticles in living tissue constructs is an unnatural approach and may generate nutrient/oxygen diffusion limitations, during long-term maturation of microtissues in vitro, an important parameter that must be considered at early design stages when modulating cell–microparticles density/ concentration.
为先进的 3D 生物制造开发的生物墨水中包含载有细胞的微粒,为这些构建模块增加了一层可加工性,并允许使用生物特异性组织设计来设计基于微粒的活体结构,否则这些结构很难通过其他自下而上的处理获得技术。然而,需要强调的是,在活组织结构中包含致密聚合物微粒是一种不自然的方法,并且可能会在体外微组织长期成熟期间产生营养/氧气扩散限制,这是在早期设计阶段必须考虑的重要参数当调节细胞微粒密度/浓度时。
 
Apart from particles for bottom-up tissue engineering approaches, also cell-laden hydrogels processed as nano/microgel particles or fibers provide a seamless supporting matrix to buildup and mature 3D microtissues as it will be discussed in the following sections.
除了用于自下而上的组织工程方法的颗粒外,作为纳米/微凝胶颗粒或纤维加工的载有细胞的水凝胶也为构建和成熟的 3D 微组织提供了无缝的支撑基质,这将在以下部分中进行讨论。
 
 

3.4. Hydrogel-Based Platforms for Biomimetic Bottom-Up Assembly(基于水凝胶的仿生自下而上组装平台)

3.4.1. Cell-Laden ECM Mimetic Hydrogels(载有细胞的 ECM 模拟水凝胶)
Utilizing biomaterial-based ECM mimicking matrices for pursuing tissue-specific features and biomolecular gradients unravels the potential to achieve high-quality biological modules with flexible and augmented biofunctionality that can support cell adhesion, proliferation and ultimately de novo tissue morphogenesis. In essence, hydrogels are highly hydrated and self-supporting 3D networks with porous or fibrillar-like internal architectures similar to native ECM. These building blocks can be based on: i) natural sources, i.e., self-assembling peptides, engineered proteins, polysaccharides, and decellularized ECM; ii) synthetic polymeric materials and iii) hybrid hydrogels arising from the combination of different monomers/nanocomposites in the hydrogel network. The organization, composition, and structural features of the ECM vary significantly across tissues, hence, a universal building block may be unrealistic.[340] In a bottom-up perspective, hydrogels are advantageous due to their flexible design nature, derived from their polymeric framework and its amenability to be chemically tailored to better reproduce key ECM features (e.g., adhesion site density, biomolecule immobilization, matrix stiffness, stretchability, degradability, etc.). Moreover, their ease for obtaining cell-laden structures, sustaining proliferation, as well as providing 4D bioarchitectures that can be altered and matured through embedded cells activity or by specific stimuli are highly desirable in such bioengineering strategies
利用基于生物材料的 ECM 模拟矩阵来追求组织特异性特征和生物分子梯度,揭示了实现具有灵活和增强生物功能的高质量生物模块的潜力,这些模块可以支持细胞粘附、增殖和最终从头组织形态发生。本质上,水凝胶是高度水合和自支撑的 3D 网络,具有类似于天然 ECM 的多孔或纤维状内部结构。这些构件可以基于: i) 天然来源,即自组装肽、工程蛋白、多糖和脱细胞 ECM; ii) 合成聚合物材料和 iii) 由水凝胶网络中不同单体/纳米复合材料组合产生的混合水凝胶。 ECM 的组织、组成和结构特征因组织而异,因此,通用的构建块可能是不现实的。 [340]从自下而上的角度来看,水凝胶的优势在于其灵活的设计性质,源于它们的聚合物框架及其化学定制以更好地再现关键 ECM 特征(例如,粘附位点密度、生物分子固定化、基质刚度、可拉伸性、降解性等)。此外,在此类生物工程策略中,它们易于获得载有细胞的结构、维持增殖以及提供可以通过嵌入的细胞活性或特定刺激来改变和成熟的 4D 生物结构是非常可取的
 
The specificity of ECM-like microenvironments materialized through the encapsulation of living healthy and fully functional cells poses several challenges to the development of spatially controlled cell-laden hydrogels: i) the effective threedimensionality of the intended patterns that ii) simultaneously enable the compatibility of the 3D-assembled hydrogels with cell encapsulation via cell adhesion, but that can also direct the fate and function of the engineered bioarchitecture. By now, the importance of scaling-up cell–matrix interactions to the third dimension is unquestionable because it affects the biological activity of the final construct.[341] Despite the unambiguous importance of exposing cells to 3D-controlled cues, the patterning of hydrogel matrices has been mostly achieved solely on a 2D perspective and frequently of a multistep nature or resorting to top-down reactions based on photolithographic methods. For example, photosensitive S-2-nitrobenzyl-cysteine moieties immobilized on a nonadhesive agarose matrix allow for UV-induced uncaging of sulfhydryl groups at specific regions, where maleimide-terminated peptides containing the fibronectin binding domain can be precisely tethered to the matrix framework via thiol-ene up to a 1.5 mm depth.[342] In this way, cell adhesion can be spatially controlled, unlike in tissue-derived materials (e.g., collagen and fibrin), which contain randomly dispersed cell adhesion domains. Currently, with emerging multiphoton-based lithography, researchers have now successfully reported true 3D patterning of multiple growth factors with subcellular precision and interconnectivity (Figure 10A).[342,343] Beyond that, orthogonal photodegradation has been exploited to engineer cell-laden hydrogels with intricate and perfusable cavities and microchannels with user-controlled shapes and location (Figure 10B–E).[344–346] Alternatively, in a truly biomimetic approach, Culver and co-workers have exploited two-photon lithography for manufacturing cell-laden PEG-based hydrogels with precise 3D cell immobilization based on native tissue sections as biological blueprints.[347] These hydrogels were rendered cell-degradable by imparting the PEG-diacrylate backbone with matrix metalloproteinase-sensitive peptide (GGPQGIWGQGK). Here, the researchers imaged cross-sections of different tissues (e.g., retina, cerebral cortex, heart, etc.) and were able to precisely match the hydrogel patterning to the original tissue vascular bed. This image-guided 3D photopatterning successfully recapitulated the neural stem cell niche seen in the subependymal zone of mice (Figure 10F). The versatility of this technology allowed them to pattern distinct bioactive peptides on regions of interest and accurately recreating vascular and neural progenitor staining of the biological tissue section. Moreover, the advent of photoinitiator-free strategies based on the [2 + 2] cycloaddition of maleimide groups at physiological conditions will foster the development of truly multiphoton click chemistry reactions for engineering cell microenvironment niches in hydrogel structures.
通过封装活的健康和功能齐全的细胞实现的类 ECM 微环境的特异性对空间控制的载细胞水凝胶的开发提出了几个挑战:i)预期模式的有效三维度,ii)同时实现兼容性通过细胞粘附进行细胞封装的 3D 组装水凝胶,但这也可以指导工程生物结构的命运和功能。到目前为止,将细胞-基质相互作用放大到三维的重要性是毋庸置疑的,因为它会影响最终构建体的生物活性。 [341]尽管将细胞暴露在 3D 控制的线索下具有明确的重要性,但水凝胶基质的图案化大多仅在 2D 视角下实现,并且通常具有多步性质或诉诸基于光刻方法的自上而下的反应。例如,固定在非粘附性琼脂糖基质上的光敏 S-2-硝基苄基-半胱氨酸部分允许 UV 诱导的巯基在特定区域的脱嵌,其中含有纤连蛋白结合结构域的马来酰亚胺末端肽可以通过以下方式精确地拴在基质框架上硫醇烯的深度可达 1.5 毫米。[342]通过这种方式,可以在空间上控制细胞粘附,这与包含随机分散的细胞粘附域的组织衍生材料(例如胶原蛋白和纤维蛋白)不同。目前,随着基于多光子的光刻技术的兴起,研究人员现已成功报道了具有亚细胞精度和互连性的多种生长因子的真正 3D 图案化(图 10A)。[342,343] 除此之外,正交光降解已被用于设计具有复杂结构的载细胞水凝胶。以及具有用户控制的形状和位置的可灌注腔和微通道(图 10B-E)。[344-346] 或者,在真正的仿生方法中,Culver 及其同事利用双光子光刻技术制造载有细胞的 PEG-基于天然组织切片作为生物蓝图的具有精确 3D 细胞固定的水凝胶。 [347]通过赋予 PEG-二丙烯酸酯骨架与基质金属蛋白酶敏感肽 (GGPQGIWGQGK),这些水凝胶可被细胞降解。在这里,研究人员对不同组织(例如视网膜、大脑皮层、心脏等)的横截面进行了成像,并能够将水凝胶图案与原始组织血管床精确匹配。这种图像引导的 3D 光模式成功地概括了在小鼠室管膜下区看到的神经干细胞生态位(图 10F)。该技术的多功能性使他们能够在感兴趣的区域形成不同的生物活性肽,并准确地重建生物组织切片的血管和神经祖细胞染色。此外,基于在生理条件下马来酰亚胺基团的 [2 + 2] 环加成的无光引发剂策略的出现,将促进真正的多光子点击化学反应的发展,用于工程化水凝胶结构中的细胞微环境生态位。
 
Despite the relevance of top-down patterning techniques that enable the precise control of hydrogels chemistry on a 3D space and over time, the self-assembly of precisely designed hydrogels through spontaneous intermolecular interactions benefiting from easy injectability and tailoring of biophysical properties of ECM-mimetic structures could further potentiate these applications.[221,350] However, contrarily to the abovementioned examples of top-down patterning of 3D hydrogels, reports of exclusively bottom-up hydrogel assembly strategies targeting the precise positioning of biochemical patterns and gradients in 3D are still limited. Recent works have begun to utilize molecular self-assembly to generate hydrogel 3D bioarchitectures capable of continuously expanding their network similar to the growth of living tissues in nature.[351] Here, instead of growth factors, researchers manipulated oxygen concentration to engineer complex 3D shapes and also intricate out-of-plane buckling by inhibiting growth at specific regions. This is the first study for generating self-assembled hydrogel architectures inspired by the bottom-up morphogenesis process of living tissues, but cell-friendly conditions will still need to be attained for achieving relevant cell-laden hydrogel structures.
尽管自上而下的图案化技术能够在 3D 空间和时间上精确控制水凝胶化学,但精确设计的水凝胶通过自发的分子间相互作用进行自组装,这得益于易于注射和定制 ECM 模拟物的生物物理特性[221,350] 然而,与上述 3D 水凝胶自上而下图案化的示例相反,针对 3D 中生化模式和梯度的精确定位的专门自下而上水凝胶组装策略的报道仍然有限。最近的工作已经开始利用分子自组装来生成水凝胶 3D 生物结构,该结构能够不断扩展其网络,类似于自然界中活组织的生长。 [351]在这里,研究人员操纵氧气浓度而不是生长因子来设计复杂的 3D 形状,并通过抑制特定区域的生长来实现复杂的平面外屈曲。这是第一项受活组织自下而上形态发生过程启发而生成自组装水凝胶结构的研究,但仍需要达到对细胞友好的条件才能实现相关的载细胞水凝胶结构。
 
The ability of synthetic or recombinant short peptide sequences to function as hydrogelators has been used as the driving principle of one of the most commonly reported strategies to prepare bottom-up self-assembled hydrogels.[350,352–355] The use of amino acid sequences is an interesting approach due to their possible similarity with native ECM features capable of driving cell adhesion and other cell response phenomena, which include cell migration, apoptosis, mechanotransduction, vascularization, among others. Moreover, most of reported amino acid sequences used for the preparation of hydrogels are widely considered biocompatible, potentially biodegradable and nonimmunogenic.[356] The mechanism of hydrogelation of peptide blocks is generally regulated by noncovalent interactions which drive their assembly into fibrous structures that entangle in the form of 3D highly hydrated solid structures in the presence of stimuli such as ions, enzymes, temperature, pH changes or exposure to light.[356–359] Although the mechanisms driving the formation of supramolecular hydrogels are mostly based on noncovalent bonds, researchers’ recently reported the assembly of amphiphilic peptides through nonweak interactions convertible to covalent bonding.[360] Self-assembled networks based on nanofiber peptides include vast applications on neural, myocardial and wound regeneration.[361–363] The cell-friendly conditions under which the spontaneous assembly occurs, along with the ability to tailor the biochemical composition to mimic ECM cues, enabled the exploitation of bottom-up self-assembled peptide hydrogels as promising cell encapsulating matrices. The dispersion of hepatocyte-like spheroids in a RAD16-I peptide hydrogel showed that the generated 3D hydrogel significantly tailored cellular proliferation and presented matured differentiation profiles.[364] Indeed, it has been recently disclosed that the bioactivity of amphiphile mimetic peptides (e.g., brain-derived neurotrophic factor, BDNF) can be augmented in 3D hydrogels due to conformationally improved peptide–cell interactions in these systems, which not only encourages cell infiltration but increases functional maturation of the construct.[365] A co-assembly system of peptide amphiphiles designed to form nanofibers targeting cartilage repair was also proven promising for tissue regeneration based on a cell encapsulation approach.[366] Indeed, the decoration of peptide segments with the TGF-β1 binding epitope (i.e., HSNGLPL sequence), which is exposed in high density to encapsulated cells and damaged tissues due to the collapsing of the hydrophobic alkyl chains in the amphiphilic molecule, promoted the chondrogenic differentiation of mesenchymal stem cells encapsulated within the hydrogel and boosted the formation of hyaline cartilage in osteochondral defects in in vivo rabbit models. Hydrogels based on other peptide amphiphiles with bioactive domains as IKVAV , or with a tenascin-C-mimetic configuration, showed potential as cell encapsulation and regeneration matrices for inner ear and neural repair.
合成或重组短肽序列作为水凝胶剂的能力已被用作制备自下而上自组装水凝胶的最常见报告策略之一的驱动原理。 [350,352–355] 氨基酸序列的使用是一种有趣的方法,因为它们可能与能够驱动细胞粘附和其他细胞反应现象的天然 ECM 特征相似,包括细胞迁移、细胞凋亡、机械转导、血管化等。此外,大多数用于制备水凝胶的已报道氨基酸序列被广泛认为具有生物相容性、潜在可生物降解性和非免疫原性。 [356]肽块的水凝胶化机制通常由非共价相互作用调节,非共价相互作用驱动它们组装成纤维结构,在离子、酶、温度、pH 变化或暴露于光等刺激下以 3D 高度水合固体结构的形式纠缠在一起[356–359] 尽管驱动超分子水凝胶形成的机制主要基于非共价键,但研究人员最近报道了两亲肽通过可转换为共价键的非弱相互作用组装。 [360]基于纳米纤维肽的自组装网络包括在神经、心肌和伤口再生方面的广泛应用。[361-363] 自发组装发生的细胞友好条件,以及定制生化成分以模拟 ECM 线索的能力,使自下而上的自组装肽水凝胶作为有前途的细胞封装基质得以开发。肝细胞样球体在 RAD16-I 肽水凝胶中的分散表明,生成的 3D 水凝胶显着调整了细胞增殖并呈现出成熟的分化特征。 [364]事实上,最近发现两亲肽(例如脑源性神经营养因子,BDNF)的生物活性可以在 3D 水凝胶中增强,因为这些系统中的肽-细胞相互作用的构象得到改善,这不仅促进细胞浸润,而且增加结构的功能成熟度。 [365]设计用于形成靶向软骨修复的纳米纤维的肽两亲物的共组装系统也被证明有希望基于细胞封装方法进行组织再生。 [366]实际上,由于两亲性分子中疏水性烷基链的坍塌,以高密度暴露于封装细胞和受损组织中的 TGF-β1 结合表位(即 HSNGLPL 序列)修饰肽段,促进了软骨形成。包封在水凝胶中的间充质干细胞的分化,促进了体内兔模型骨软骨缺损中透明软骨的形成。基于其他肽两亲物的水凝胶具有 IKVAV 等生物活性结构域或具有生腱蛋白-C 模拟结构的水凝胶,显示出作为内耳和神经修复的细胞封装和再生基质的潜力。
 
Native tissues can display different degrees of anisotropy and spatially varying stiffness, that are key players in guiding cell migration, organization, and function.[340] Beyond their flexibility for designing self-assembled hydrogels with tunable biochemical and mechanical features, peptide amphiphiles can be also explored for developing biomimetic constructs. In an innovative study, researchers have exploited a C16G3RGDS peptide amphiphile for programing cell-driven contraction of compressed collagen hydrogels in defined regions.[371] Here, cells served as bioactuators capable of mechanically transforming hydrogels into curved structures, thus remodeling the dense collagen stroma toward a more native-like organization found in human cornea. In fact, these 4D self-curved tissues presented superior ECM organization and orthogonally aligned cells over planar substrates. Alternatively, an interesting study designed by DeForest group exploited fusion proteins as hydrogel crosslinkers to fabricate bioarchictectures that respond to userdefined stimuli such as calcium (e.g., calmodulin-based proteins) and light (e.g., photosensitive light, oxygen, and voltage sensing domain 2, LOV2).[372] In this study, the unique semisynthetic protein-PEG hydrogel matrices yielded tunable stiffness-patternable features which could be cycled on demand to investigate 3D cellular response to cyclic loading, a key aspect that native ECM is subjected to but was yet to be replicated in cell-laden hydrogel constructs (Figure 10G). In another sophisticated work, researchers have manufactured core–shell hyaluronic-based hydrogels with distinct biochemical and biophysical features.[373] Cell adhesion site density, enzymatic degradability, and mechanical stiffness could be hierarchically presented in a core–shell bioarchitecture by varying the macromer/crosslinker ratios and timing of introduction of the interfacial crosslinking agents that covalently functionalized hydrogels at the liquid-gel interface. The biorthogonal tetrazine-trans-cyclooctene ligation here used occurs in aqueous conditions with extremely fast kinetics and without using any specialized equipment, catalyst, or triggering stimuli. The responses of human mesenchymal stem cells encapsulated in these hydrogels were assessed according to the different properties of the core–shell bioarchitectures. For homogenous (i.e., core = shell) stiff hydrogels, cells remained spherical ≈7 days in those nondegradable and nonadhesive platforms, whereas MMP-degradable gels with few adhesion sites were sufficient to foster cells spreading. The researchers could then assemble heterogenous hydrogels with spatially resolved properties, such as stiff-to-soft transitions from shell to core, as well as increasing MMP degradability or adhesion site density toward the core. Recently, the same group has now devised multilayered hydrogel channels with three different cell populations spatially patterned across its interfaces, thus yielding functional bioarchitectures more closely resembling native arteries.[374] Another relevant strategy to obtain cellularly graded hydrogels exploits the self-healing phenomena that is characteristic of dynamic covalent hydrogel networks. Using this approach cell-laden hydrogels based on 2-acrylamidophenylboronic acid and poly(vinyl alcohol), which readily self-assembled in aqueous conditions were successfully fabricated.[373] Due to the dynamic nature of boronic-diol bonds, these hydrogels exhibited significant self-healing capacity, which was exploited for establishing a gradient of two different cell types (e.g., lung fibroblasts and breast cancer cells) initially cultured separately on different hydrogels. After cutting each cell-laden hydrogel block, two halves were merged together due to their natural self-healing features and simultaneous cell migration could be observed across the healed interface of the newly formed binary hydrogel. This current design could be further improved by including ECM-mimetic domains eliciting adhesion or matrix remodeling. In the future, the preparation of cell-laden hydrogels with distinct customizable microenvironments will undoubtedly be essential for manufacturing advanced bottom-up bioarchitectures.
天然组织可以表现出不同程度的各向异性和空间变化的刚度,它们是指导细胞迁移、组织和功能的关键因素。 [340]除了设计具有可调生化和机械特性的自组装水凝胶的灵活性之外,还可以探索肽两亲物以开发仿生结构。在一项创新研究中,研究人员利用 C16G3RGDS 肽两亲物在特定区域对压缩胶原水凝胶的细胞驱动收缩进行编程。 [371]在这里,细胞充当生物驱动器,能够将水凝胶机械地转化为弯曲结构,从而将致密的胶原基质重塑为在人类角膜中发现的更类似于天然的组织。事实上,这些 4D 自弯曲组织在平面基板上呈现出优越的 ECM 组织和正交排列的细胞。或者,DeForest 小组设计的一项有趣的研究利用融合蛋白作为水凝胶交联剂来制造对用户定义的刺激(例如钙(例如,基于钙调蛋白的蛋白质)和光(例如,光敏光、氧和电压感应域 2)做出响应的生物结构, LOV2).[372]在这项研究中,独特的半合成蛋白质-PEG 水凝胶基质产生了可调节的刚度模式特征,可以按需循环以研究 3D 细胞对循环载荷的反应,这是天然 ECM 经受但尚未在细胞中复制的一个关键方面负载水凝胶结构(图 10G)。在另一项复杂的工作中,研究人员制造了基于核壳透明质酸的水凝胶,具有独特的生化和生物物理特征。 [373]通过改变大分子单体/交联剂的比例和在液体-凝胶界面处共价功能化水凝胶的界面交联剂的引入时间,细胞粘附位点密度、酶促降解性和机械刚度可以分级呈现在核壳生物结构中。这里使用的双正交四嗪-反式-环辛烯连接发生在具有极快动力学的水性条件下,无需使用任何专门的设备、催化剂或触发刺激。根据核壳生物结构的不同特性,评估了封装在这些水凝胶中的人类间充质干细胞的反应。对于同质(即核心 = 壳)硬水凝胶,细胞在那些不可降解和非粘附性平台中保持球形约 7 天,而具有少量粘附位点的 MMP 可降解凝胶足以促进细胞扩散。然后,研究人员可以组装具有空间分辨特性的异质水凝胶,例如从外壳到核心的硬到软过渡,以及增加 MMP 可降解性或向核心的粘附位点密度。最近,同一组现在设计了多层水凝胶通道,在其界面上具有三种不同的细胞群空间图案,从而产生更类似于天然动脉的功能性生物结构。 [374]另一种获得细胞分级水凝胶的相关策略利用了动态共价水凝胶网络所特有的自愈现象。使用这种方法,成功地制造了基于 2-丙烯酰胺基苯基硼酸和聚乙烯醇的载细胞水凝胶,它们在水性条件下易于自组装。 [373]由于硼二醇键的动态特性,这些水凝胶表现出显着的自愈能力,可用于建立最初在不同水凝胶上分别培养的两种不同细胞类型(例如肺成纤维细胞和乳腺癌细胞)的梯度。在切割每个载有细胞的水凝胶块后,由于其天然的自我修复特性,两半合并在一起,并且可以在新形成的二元水凝胶的愈合界面上观察到同时的细胞迁移。这种当前的设计可以通过包括引起粘附或基质重塑的 ECM 模拟域来进一步改进。未来,制备具有独特可定制微环境的载细胞水凝胶无疑对于制造先进的自下而上生物结构至关重要。
 
Noncovalent interactions (e.g., host–guest inclusion complexes, avidin–biotin, and nucleotide base pairs) are attractive not only for self-assembling bottom-up hydrogels, but also because they can be engineered to endow the hydrogel networks with unique features owing to its reversible and adaptive nature. In host–guest interactions, the binding readiness between opposing pairs is convenient because it partially recapitulates the constant adaptiveness of native ECM and embedded cells, thus being promising for modulating the biochemical 3D environment.[375] For instance, the well-known host–guest β-cyclodextrin/adamantane pair can be used for tackling the dynamic mechano-regulation of cell–substrate interactions.[376] Adjusting ratios of host/guest monomers allowed the precise tailoring of the initial mechanical properties of the hydrogel, while the subsequent addition of free competing host molecules enabled softening of the material ondemand. In comparison to previously reported systems based on UV irradiation or temperature as sources of mechanomodulation, the authors hypothesize that this host–guest system could allow handling cells with high viability as compared to potentially damaging stimuli. Synthetic adamantane and cyclodextrin derivatives are commercially available and can be easily installed into a plethora of polymers, including polysaccharides such as hyaluronic acid that are frequently used for designing cell-bearing bottom-up hydrogels with shear-thinning properties.[377,378] The ability of such hydrogels to withstand high deformations has seldom been studied. T o this end, researchers have explored acrylated-β-cyclodextrin and adamantane-hyaluronic acid as macro-crosslinkers of ductile polymers prepared through the polymerization of N,N-dimethylacrylamide monomers.[379] This novel strategy yielded highly swollen cell-laden hydrogels with outstanding resistance to fatigue, i.e., up to 80% compressive deformation for over 1000 cycles. The high viability observed for encapsulated cells after deformation cycles makes these hydrogels promising materials for mechanostimulation and interesting candidates for reproducing tissues subjected to cyclic deformation such as cartilage.
非共价相互作用(例如,主客体包合复合物、抗生物素蛋白-生物素和核苷酸碱基对)不仅对自组装自下而上水凝胶具有吸引力,而且还因为它们可以被设计成赋予水凝胶网络以独特的特征,因为它的可逆性和适应性。在主客交互中,相对对之间的结合准备很方便,因为它部分概括了天然 ECM 和嵌入细胞的恒定适应性,因此有望用于调节生化 3D 环境。 [375]例如,众所周知的主客体β-环糊精/金刚烷对可用于解决细胞-底物相互作用的动态机械调节。 [376]调整主体/客体单体的比例可以精确调整水凝胶的初始机械性能,而随后添加自由竞争的主体分子可以按需软化材料。与先前报道的基于紫外线照射或温度作为机械调制来源的系统相比,作者假设与潜在的破坏性刺激相比,这种主客系统可以允许处理具有高活力的细胞。合成的金刚烷和环糊精衍生物是市售的,可以很容易地安装到大量的聚合物中,包括多糖,例如透明质酸,这些多糖经常用于设计具有剪切稀化特性的带有细胞的自下而上水凝胶。 [377,378]这种承受高变形的水凝胶很少被研究。为此,研究人员探索了丙烯酸化-β-环糊精和金刚烷-透明质酸作为通过 N,N-二甲基丙烯酰胺单体聚合制备的韧性聚合物的宏观交联剂。 [379]这种新颖的策略产生了高度溶胀的载有细胞的水凝胶,具有出色的抗疲劳性,即超过 1000 次循环的压缩变形率高达 80%。在变形循环后观察到封装细胞的高活力使这些水凝胶有希望成为机械刺激的材料,并成为再生经受循环变形的组织(如软骨)的有趣候选者。
 
Alternatively, natural host–guest pairs like streptavidin–biotin have also enabled the processing of cell-laden structures.[377,380] For example, living cells modified with avidin were used as hydrogel crosslinkers through direct interaction with biotinylated 1,4-benyl-dicarbonxamide supramolecular gelators capable of being easily modified and with the ability to self-assemble.[380] The stability achieved in this system, in opposition to the comparatively poor binding verified on polymeric molecules, drove selective and faster proliferation of different cell types. However, drawbacks associated with the avidin–biotin pair and cyclodextrin-based inclusion complexes include the difficult scale-up production of molecules modified with the streptavidin–biotin pair and the poor in vivo application of cyclodextrin-based pairs due to low binding affinity.[381] T o overcome such limitations, Kim ’s group suggested novel supramolecular hydrogel assemblies based on hyaluronic acid modified with pumpkin-shaped cucurbit[6]uril (CB[6]) or diaminohexane groups.[381] The highly selective and strong CB[6]–diaminohexane interaction allowed cell encapsulation on self-assembled hydrogels,[382] which could then be later modularly modified by treating the hydrogel with multifunctional tags-CB[6], which included RGD domains to promote cell adhesion, FITC probes for in vivo detection,[381] or TGF-β3 and dexamethasone to regulate mesenchymal stem cells’ chondrogenic differentiation.[383] Other interesting systems can comprise dock-and-lock (DnL) mechanisms based on engineered proteins and anchoring proteins attached to multiarm crosslinker polymers, which can instantly lock onto recombinant “docking” domains under physiological conditions.[384] Hydrogels prepared using this chemistry displayed a remarkable ability to recover from deformation cycles with selfhealing properties independently from mechanical disruption, while enabling cytocompatible encapsulation and injection of mesenchymal stem cells.
或者,像链霉亲和素-生物素这样的天然宿主-客体对也能够处理载有细胞的结构。 [377,380] 例如,用亲和素修饰的活细胞通过与生物素化的 1,4-苯甲基-二甲酰胺直接相互作用被用作水凝胶交联剂[380] 易于修饰并具有自组装能力的超分子凝胶剂。在该系统中实现的稳定性,与在聚合物分子上验证的相对较差的结合相反,推动了不同细胞类型的选择性和更快的增殖。然而,与亲和素-生物素对和基于环糊精的包合物相关的缺点包括难以放大生产用链霉亲和素-生物素对修饰的分子,以及由于低结合亲和力而导致基于环糊精的对在体内应用不佳。第381章]为了克服这些限制,Kim 的小组提出了基于透明质酸的新型超分子水凝胶组件,用南瓜形葫芦 [6] 脲 (CB[6]) 或二氨基己烷基团修饰。 [381]高选择性和强 CB[6]-二氨基己烷相互作用允许细胞封装在自组装水凝胶上,[382] 然后可以通过用多功能标签-CB[6] 处理水凝胶进行模块化修饰,其中包括 RGD 结构域以促进细胞粘附,用于体内检测的 FITC 探针,[381] 或 TGF-β3 和地塞米松调节间充质干细胞的软骨分化。 [383]其他有趣的系统可以包括基于工程蛋白质的对接锁定 (DnL) 机制和连接到多臂交联剂聚合物的锚定蛋白,它们可以在生理条件下立即锁定重组“对接”结构域。 [384]使用这种化学方法制备的水凝胶表现出非凡的从变形循环中恢复的能力,具有独立于机械破坏的自修复特性,同时能够进行细胞相容性封装和间充质干细胞注射。
 
Owing to their several attractive features, including controllable sequences, precise recognition, and low toxicity, DNA building blocks have evolved considerably in the last decades for designing advanced hydrogel systems.[385] However, hydrogels based on spontaneous nucleotide pairing are still scarce, and the majority of reported technologies are dependent on enzymes,[386] pH changes and temperature variations to promote DNA fragmentation.[387] In fact, the decoration of macromolecules (e.g., polymeric chains and peptide sequences) with complementary nucleotide sequences has rendered the most effective and stimulus-free cell-compatible self-assembling of hydrogel micro- and macroscopic units.[388,389] In this context, progress in 3D bioprinting enabled by DNA fragments hybridization has progressed significantly over the last years. Researchers have developed a novel class of bioinks based on a polypeptide–DNA conjugate (bioink A) and complementary DNA linkers (bioink B).[389] Upon co-injection under physiological conditions both inks immediately formed a stable hydrogel that enabled high cell viability and the precise printing of multilayered structures with any intended shape. In addition, due to its polypeptide and nucleic backbone, the millimeter-sized bioarchitectures were naturally degradable through the action of nucleases or proteases. Recently, carboxymethylcellulose-based hydrogels crosslinked by self-complementary DNA interactions (duplex nucleic acids) and donor– acceptor (dopamine-bipyridinium) redox-mediated switchable bonds yielded stimuli-responsive networks with dynamic stiffness and simultaneous self-healing and shape memory properties.[390] Double network hydrogels that self-assemble entirely from noncovalent interactions, i.e., DNA hybridization and host–guest inclusion complexes between cucurbit[8] uril (CB) and phenylalanine functionalized carboxymethylcellulose have also been reported.[391] The resulting fully interpenetrating supramolecular network exhibited remarkable stretchability, ductility, shear-thinning and thixotropic properties. Moreover, the use of DNA motifs for programming constructs self-assembly is a unique strategy because such DNA motifs can potentially be recognized and processed by embedded cells or enzymes.[392] Hence, they can signal for the enzymatic machinery of cell lysates and instruct them to synthesize functional proteins, thus assembling biorelevant protein-producing hydrogels.[
由于它们的几个吸引人的特性,包括可控序列、精确识别和低毒性,DNA 构建模块在过去几十年中已经发生了相当大的发展,用于设计先进的水凝胶系统。 [385]然而,基于自发核苷酸配对的水凝胶仍然稀缺,大多数报道的技术都依赖于酶、[386] pH 变化和温度变化来促进 DNA 片段化。 [387]事实上,具有互补核苷酸序列的大分子(例如,聚合物链和肽序列)的装饰已经使水凝胶微观和宏观单元的最有效和无刺激的细胞相容自组装。 [388,389] 在这种情况下,在过去几年中,通过 DNA 片段杂交实现的 3D 生物打印取得了显着进展。研究人员开发了一种基于多肽-DNA 偶联物(bioink A)和互补 DNA 接头(bioink B)的新型生物墨水。 [389]在生理条件下共注射后,两种墨水立即形成稳定的水凝胶,可实现高细胞活力和任何预期形状的多层结构的精确印刷。此外,由于其多肽和核酸骨架,毫米大小的生物结构可以通过核酸酶或蛋白酶的作用自然降解。最近,基于羧甲基纤维素的水凝胶通过自互补 DNA 相互作用(双链体核酸)和供体-受体(多巴胺-联吡啶)氧化还原介导的可切换键交联,产生了具有动态刚度和同时自愈和形状记忆特性的刺激响应网络。 [390]还报道了完全由非共价相互作用自组装的双网络水凝胶,即 DNA 杂交和葫芦[8] 尿素 (CB) 和苯丙氨酸功能化羧甲基纤维素之间的主客体包合复合物。 [391]由此产生的完全互穿的超分子网络表现出显着的拉伸性、延展性、剪切稀化和触变性。此外,使用 DNA 基序对构建体进行编程是一种独特的策略,因为这些 DNA 基序可能被嵌入的细胞或酶识别和加工。 [392]因此,它们可以为细胞裂解物的酶促机制发出信号,并指导它们合成功能性蛋白质,从而组装出生物相关的蛋白质生产水凝胶。
 
Considering the versatility and interchangeable features of cell–biomaterial hydrogel assemblies, their combination into higher order 3D bioarchitectures with well-defined and complex geometries that recapitulate the anatomic features of different human tissues is envisioned to open new avenues toward their application in numerous clinical scenarios.This potential is starting to be materialized with the advent of biofabrication technologies that allow cells and biomaterials precise processing and positioning under conditions that assure maximum viability and biofunctionality
考虑到细胞-生物材料水凝胶组件的多功能性和可互换特性,将它们组合成具有明确定义和复杂几何形状的高阶 3D 生物架构,可以概括不同人体组织的解剖特征,从而为其在众多临床场景中的应用开辟新途径。随着生物制造技术的出现,这种潜力开始实现,该技术允许细胞和生物材料在确保最大生存能力和生物功能的条件下进行精确加工和定位
 
3.4.2. Advanced 3D Bioprocessed Cell-Laden Hydrogels(先进的 3D 生物处理载细胞水凝胶)
The latest advances obtained in cell-laden hydrogel bioprinting technologies have enabled the development of extremely sophisticated cell-hydrogel living architectures in native ECMmimetic microenvironments laden with multiple cell components and exhibiting evermore biospecific designs, as well as human anatomic-scale. Aiming to fabricate such constructs, researchers have produced pie-shaped alginate hydrogels with three cell types (i.e., amniotic-fluid-derived stem cells, smooth muscle cells, and aortic endothelial cells), containing spatially defined heterogeneous multiple cell distribution across the bioprinted construct by using an in-house modified thermal jet printer.[394] Inkjet bioprinting takes advantage from picoliter drop generation on-demand and high printing speeds for manufacturing 3D cell-laden hydrogel building blocks with high controlled spatial deposition of cells and biomaterials.[395] Beyond allowing one to spatially control cell distribution, this technology has also enabled the fabrication of fibroblastladen vascular-like tubes with appropriate horizontal/vertical bifurcations via an alginate-based bioink and piezoelectric jet printers.[396] In addition, inkjet-based bioprinting has been employed for producing layered structures with two different alginate-based bioinks, namely, 3D checkerboards, concentric/ halved circular patterns, and other complex layouts with high precision (≈100 µm).[397] These bioinks were also combined with MMP-sensitive PEG for producing 3D perfusable channels via a sacrificial layer-based method. Recently, inkjet-spray bioprinting that avoids the use of crosslinking baths has been developed for scalable manufacturing of layered hydrogel structures via an alginate/saponified GelMA-based bioink (Figure 11A).[395] By incorporating ECM-mimicking GelMA within the inkjet bioprinting process, this work improved the design over other attempts solely comprising alginate-based bioinks and could produce large-scale hydrogel structures with improved cell proliferation/spreading and collagen expression. This technology allowed faster bioprinting (≈3–23-fold) than the previously highlighted studies and is compatible with printing of heterogeneous hydrogel constructs. Moreover, GelMA blending improved hydrogels mechanical properties (i.e., compressive modulus, ≈10–25 kPa), an important aspect when foreseeing the biomedical applicability of such constructs. Despite this, the range of biomaterials compatible with inkjet processes is limited, and the fabrication of mechanically reinforced/thick 3D bioprinted constructs with tissue-like cell densities is highly challenging to materialize through this modality.[398]
在载有细胞的水凝胶生物打印技术方面取得的最新进展使我们能够在天然 ECM 模拟微环境中开发极其复杂的细胞水凝胶活体结构,该微环境中充满多种细胞成分,并展示出更多的生物特异性设计,以及人体解剖学规模。为了制造这种结构,研究人员生产了具有三种细胞类型(即羊水干细胞、平滑肌细胞和主动脉内皮细胞)的饼状藻酸盐水凝胶,在生物打印结构中包含空间定义的异质多细胞分布通过使用内部改进的热喷射打印机。 [394]喷墨生物打印利用按需生成皮升液滴和高打印速度来制造具有高度受控的细胞和生物材料空间沉积的载有 3D 细胞的水凝胶构件。 [395]除了允许人们在空间上控制细胞分布之外,该技术还能够通过基于藻酸盐的生物墨水和压电喷射打印机制造具有适当水平/垂直分叉的成纤维细胞血管样管。 [396]此外,基于喷墨的生物打印已被用于生产具有两种不同基于藻酸盐的生物墨水的分层结构,即 3D 棋盘、同心/半圆形图案和其他高精度 (≈100 µm) 的复杂布局。 [397]这些生物墨水还与 MMP 敏感 PEG 相结合,通过基于牺牲层的方法产生 3D 可灌注通道。最近,已开发出避免使用交联浴的喷墨喷射生物打印技术,用于通过基于藻酸盐/皂化 GelMA 的生物墨水大规模制造分层水凝胶结构(图 11A)。 [395]通过在喷墨生物打印过程中加入 ECM 模拟 GelMA,与仅包含基于藻酸盐的生物墨水的其他尝试相比,这项工作改进了设计,并且可以产生具有改善的细胞增殖/扩散和胶原蛋白表达的大规模水凝胶结构。与之前强调的研究相比,该技术允许更快的生物打印(≈3-23 倍),并且与异质水凝胶结构的打印兼容。此外,GelMA 混合改善了水凝胶的机械性能(即压缩模量,≈10-25 kPa),这是预测此类结构的生物医学适用性时的一个重要方面。尽管如此,与喷墨工艺兼容的生物材料的范围是有限的,并且通过这种方式实现具有组织样细胞密度的机械增强/厚 3D 生物打印结构的制造极具挑战性。 [398]
 
To bridge this gap, extrusion-based bioprinting is a valuable alternative as it allows bioink deposition at high cell densities and the manufacturing of large scale 3D constructs, being one of the most widely established bioprinting technologies due to its relative simplicity and versatility.[398] Using this approach cryopreservable cell-laden microgels have been employed as offthe-shelf bioinks for on-demand extrusion-based bioprinting of modular 3D constructs.[402] Alternatively, microfluidic-produced norbornene-functionalized hyaluronic acid/PEG-diacrylate microgels were employed as densely packed granular inks for 3D printing purposes, envisioning the design of particulated bioinks composed entirely of bundled microgels (Figure 11B). For obtaining the extrudable granular ink, cell-laden microgels containing NIH/3T3 fibroblasts were produced upon visible light photocrosslinking and subsequently compacted upon vacuum-driven filtration before printing, while maintaining high cell viability (≈70%) during both processes. Such shearthinning jammed microgel inks could be printed into diverse 3D constructs which could be stabilized with posterior interparticle photocrosslinking for producing mechanically robust architectures
为了弥补这一差距,基于挤压的生物打印是一种有价值的替代方案,因为它允许在高细胞密度下沉积生物墨水并制造大规模3D结构,由于其相对简单和多功能性,这是最广泛建立的生物打印技术之一。[398]使用这种方法,可冷冻保存的细胞载微凝胶已被用作现成的生物墨水,用于按需挤压基于挤压的模块化3D结构的生物打印。[402]或者,微流控生产的降冰片烯功能化透明质酸/聚乙二丙烯酸酯微凝胶被用作密集包装的颗粒墨水用于3D打印目的,设想了完全由捆绑微凝胶组成的颗粒状生物墨水的设计(图11B)。为了获得可挤压的颗粒油墨,通过可见光光交联制得含有NIH/3T3成纤维细胞的细胞微凝胶,然后在印刷前通过真空驱动过滤进行压实,同时在两个过程中保持高细胞存活率(≈70%)。这种剪切稀化堵塞的微凝胶油墨可以打印成不同的3D结构,这些结构可以通过后部粒子间光交联来稳定,以产生机械坚固的结构
 
However, from a critical perspective the packing density of these microgels must be carefully addressed to allow a compromise between 3D microtissues cellular density and the availability of nutrients/oxygen, as well as removal of metabolites during in vitro maturation. Aiming to address this important aspect, recent endeavors have focused on the potential of aqueous two-phase emulsion bioinks (i.e., immiscible GelMA/polyethylene oxide) for bioprinting hydrogel constructs with predesigned internal porous architectures.[403] The obtained pore-forming bioprinted 3D constructs displayed enhanced cell viability, spreading and proliferation over standard nonporous GelMA hydrogels across three different cell types (i.e., human hepatocellular carcinoma cells, human umbilical vein endothelial cells, and mouse embryonic fibroblasts). Although an elegant strategy for bioprinting pore-forming constructs with superior biological properties, these approaches still do not allow precise architectural control over vascular networks, a critical aspect in bottom-up tissue engineering. In this context, advanced multilayered coaxial extrusion systems have been employed for bioprinting core–shell hydrogels with prevascularized networks in a one-step process that allows researchers to obtain a more precise control over vascular frameworks, being superior to conventional sacrificial templating approaches.[404] In this approach, alginate comprising the innermost channel provided structural support during extrusion, while the final framework was permanently fixed by covalent photocrosslinking between GelMA/4-arm PEG-tetracrylate in the blend bioink. These researchers were able to assemble perfusable cell-laden hydrogel tubular 3D constructs that displayed highly organized cell spatial distribution, as well as tubular topology with gradually increasing, periodically varying or constant outer/inner diameters, thus achieving biologically relevant vascular networks with heterogeneous architectures.
然而,从关键的角度来看,这些微凝胶的堆积密度必须仔细考虑,以便在3D微组织细胞密度和营养/氧气的可用性以及体外成熟过程中代谢产物的去除之间取得妥协。为了解决这一重要方面,最近的努力集中在双水相乳化生物墨水(即不相容的GelMA/聚氧乙烷)用于生物打印具有预先设计的内部多孔结构的水凝胶结构的潜力。[403]所获得的成孔生物打印3D结构显示出在三种不同类型的细胞(即人肝细胞癌细胞、人脐静脉内皮细胞和小鼠胚胎成纤维细胞)上通过标准的非多孔GelMA水凝胶增强的细胞存活率、扩散和增殖。虽然这些方法是一种用于生物打印具有优越生物学特性的孔形成结构的优雅策略,但仍然不允许对血管网络进行精确的结构控制,这是自下而上组织工程中的一个关键方面。在这种情况下,先进的多层同轴挤压系统已被用于生物打印具有预血管化网络的核壳水凝胶,一步法使研究人员能够获得对血管框架的更精确控制,优于传统的牺牲模板方法。[404]在这种方法中,由最里面的通道组成的海藻酸盐在挤压过程中提供结构支撑,而最终框架通过GelMA/4臂聚乙二醇四酸酯在混合生物墨水中的共价光交联来永久固定。这些研究人员能够组装可灌流的细胞负载水凝胶管状3D结构,显示高度有序的细胞空间分布,以及逐渐增加、周期性变化或恒定外径/内径的管状拓扑结构,从而获得具有不同结构的生物相关血管网络。
 
Adding to this discussion, it is important to emphasize that 3D bioprinting of native-like cannular tissues (e.g., gastrointestinal tract, trachea, urinary bladder, urethra, blood vessels, etc.) should attempt to replicate not only the multilayered layout of such biological architectures, but also its varying multicellular composition.[405] T o address this requirement, a digitally coded microfluidic-based multichannel coaxial extrusion system was developed to allow continuous bioprinting of perfusable tubular structures with on-demand control over the number of concentric layers (i.e., up to 3 multilayers) spanning across userdefined lengths, while using tissue relevant cell types in separate bioinks.[405] Using this elaborate system, vascular tissues were produced with human smooth muscle cells SMCs/HUVECs, while bioprinting tubular urothelial structures containing human urothelial cells (inner layer) and human bladder SMCs (outer layer). Bioprinting of geometrically defined multicellular tubular hydrogels represents an important step toward creating biomimetic cannular microtissue constructs. Still, replicating the typical multimaterial composition of native tissues represents one of the most challenging aspects in modular bottom-up tissue engineering. Aiming to tackle this, microfluidic-based extrusion platforms were engineered for extruding more than a single bioink simultaneously.[406] Multimaterial extrusion platforms can now successfully bioprint up to seven different cell-laden hydrogel bioinks with fabrication speeds (up to 15 times faster) unmatched by conventional devices.[399] With this technology, bioprinting of several complex structures, such as multilayered cuboids, blood vessel-like rings, and miniaturized organ-like constructs with multiple bioinks was successfully achieved (Figure 11C). In this work, researchers have demonstrated the outstanding capacity for rapid continuous bioprinting of constructs with various cell types and material compositions that can be spatially controlled over defined locations or gradients. However, printing speed in such system is still a limiting factor when considering large-scale constructs engineering.[286] Recently, the integration of a microfluidic device capable of rapidly switching between multiple bioinks in a stereolithography-based platform equipped with dynamic mirror microdevice (DMD) technology has been employed for enhancing multi-biomaterial bioprinting.[400] Such device enabled the rapid 3D bioprinting of constructs with various bioinks containing different cell types, namely, musculoskeletal interfaces (e.g., C2C12, fibroblasts, and HUVECs) and tendon–bone interfaces (e.g., human MSCs, fibroblasts, and osteoblasts) (Figure 11D). This work uniquely combines the multi-biomaterial processing in multichannel microfluidic systems with the fast fabrication times and high spatial resolution of stereolithography-based bioprinting. Alternatively, the DMD capacity for dynamically projecting complex layouts has been employed for rapid 3D bioprinting of prevascularized constructs with functional endothelial networks that can anastomose with host circulation.[407] With this technology, researchers bioprinted hepatic 3D constructs with well-defined hexagonal lobule units of hepatic cells derived from human-induced pluripotent stem cells.[408]
除了这方面的讨论外,还必须强调的是,3D生物打印可用于打印类似于本地的管状组织(例如,胃肠道、气管、膀胱、尿路、血管等)。应尝试不仅复制这种生物结构的多层布局,而且复制其不同的多细胞组成。[405]为了满足这一要求,开发了一种基于数字编码的微流控多通道同轴挤压系统,允许连续生物打印可灌流的管状结构,按需控制跨越用户定义长度的同心层(即,最多3个多层)的数量,同时在单独的生物墨水中使用与组织相关的细胞类型。[405]使用这个精心设计的系统,用人的平滑肌细胞/HUVECs生产血管组织,同时生物打印包含人尿路上皮细胞(内层)和人膀胱SMCs(外层)的管状尿路上皮结构。几何定义的多细胞管状水凝胶的生物打印是朝着创建仿生管状微组织结构迈出的重要一步。尽管如此,复制天然组织的典型多材料成分是模块化自下而上组织工程中最具挑战性的方面之一。为了解决这一问题,设计了基于微流体的挤压平台,用于同时挤压多个生物墨水。[406]多材料挤压平台现在可以成功地生物打印多达七种不同的细胞负载水凝胶生物墨水,其制造速度(高达15倍)是传统设备无法比拟的。[399]利用这项技术,成功地实现了几种复杂结构的生物打印,如多层长方体、血管状环和带有多个生物墨水的小型化器官状构造(图11C)。在这项工作中,研究人员展示了快速连续生物打印各种细胞类型和材料组成的构建体的出色能力,这些构建体可以在指定的位置或梯度上进行空间控制。然而,在考虑大规模构建工程时,这种系统中的打印速度仍然是限制因素。[286]最近,在配备了动态镜像微设备(DMD)技术的基于立体平版印刷的平台中集成了能够在多种生物墨水之间快速切换的微流体设备,以增强多生物材料的生物打印。[400]这种设备使得具有包含不同细胞类型的各种生物墨水的构建物的快速3D生物打印成为可能(图11D)。肌肉骨骼界面(例如,C2C12、成纤维细胞和HUVECs)和肌腱-骨骼界面(例如,人类MSCs、成纤维细胞和成骨细胞)。这项工作独特地将多通道微流控系统中的多生物材料处理与基于立体光刻的生物打印的快速制造时间和高空间分辨率相结合。或者,DMD用于动态投影复杂布局的能力已被用于快速3D生物打印具有与宿主循环吻合的功能性内皮网络的无血运前结构。[407]利用这项技术,研究人员生物打印出具有明确定义的来自人类诱导的多能干细胞的肝细胞的六角形小叶单元的肝脏3D结构。
 
Notably, another important addition to the toolbox of advanced light-enabled bioprinting has been recently disclosed. Volumetric bioprinting represents a groundbreaking technology that can materialize cell-laden hydrogels at unprecedented speed and allows their manufacturing with innumerous complex geometrical features at high-resolution.[401] Inspired by the principles of computed tomography, the researchers irradiated a rotating cylinder containing photocrosslinkable bioink (i.e., GelMA), photoiniator and cells with a sequence of 2D light patterns that intersect and elicit spatially resolved 3D bioprinting at sites of multiple exposures. Due to this, construct dimensions do not dictate printing time, unlike conventional bioprinting approaches. In fact, human auricle models (4.14 cm3; Figure 11E) fabricated by the volumetric approach were printed at unparalleled rates versus extrusion-based printing (i.e., up to 250 times faster) and digital light processing photomanufacturing (i.e., up to 75 times faster), while also exhibited smoother surfaces unlike the other techniques which presented filament/voxel-paved surface artifacts. Interestingly, one of the unique features of volumetric bioprinting is to produce free-floating structures without using any sacrificial hydrogel templates. T o demonstrate the potential of this feature, a functional ball-and-cage cardiac valve that enabled unidirectional flow was fabricated. Such valve design cannot be reproduced by extrusion-based or DMD-based bioprinting technologies without resorting to sacrificial templates. Also, researchers were able to bioprint several complex constructs (e.g., trabecular bone and meniscus) with relevant cell types (e.g., MSCs and articular chondroprogenitor cells, respectively) and high cell viability. However, current limitations of this approach, such as limited spatial control over multicellular and multi-biomaterial distribution that are achieved in recent microfluidic-based bioprinting, should be carefully considered
值得注意的是,先进的光生物打印工具箱的另一个重要补充最近被披露。体积生物打印代表了一种突破性的技术,它可以以前所未有的速度实现细胞负载的水凝胶,并允许以高分辨率制造具有无数复杂几何特征的水凝胶。[401]受计算机断层成像原理的启发,研究人员照射了一个旋转圆柱体,其中包含可光交联的生物墨水(即GelMA)、感光剂和具有2D光图案序列的细胞,这些光图案相交并在多次曝光的位置引发空间分辨率的3D生物打印。因此,与传统的生物打印方法不同,构造尺寸不决定打印时间。事实上,通过体积法制作的人体耳廓模型(4.14 cm3;图11e)的打印速度与基于挤压的打印(即高达250倍)和数字光处理光制造(即高达75倍)相比是无与伦比的,而且还显示出与其他呈现细丝/体素铺设表面人工制品的技术不同的更平滑的表面。有趣的是,体积生物打印的独特特征之一是不使用任何牺牲水凝胶模板来产生自由漂浮的结构。为了展示这一特性的潜力,制造了一种能够实现单向流动的功能性球笼心脏瓣膜。如果不求助于牺牲模板,这种瓣膜设计不能通过基于挤压或基于DMD的生物印刷技术来复制。此外,研究人员还能够对具有相关细胞类型(例如,骨髓间充质干细胞和关节软骨前体细胞)和高细胞活性的几种复杂结构(例如,小梁骨和半月板)进行生物打印。然而,应该仔细考虑这种方法目前的局限性,例如在最近的基于微流控的生物打印中实现的对多细胞和多生物材料分布的有限的空间控制。
 
via transient supporting bioinks (i.e., alginate).[409] Alternatively, in an innovative approach, researchers have demonstrated the potential of self-assembling peptides for bioprinting a variety of ECM proteins and biomolecules (i.e., fibronectin, collagen, keratin, elastin-like proteins, hyaluronic acid, etc.) with high cell viability, thus serving as a versatile tool box that can provide tunable bioink composition and structural control.[410] Because collagen self-assembles at neutral pH, collagen bioinks can be readily bioprinted via simple pH modulation. Interestingly, researchers have recently combined this principle with the second generation of freeform reversible embedding of suspended hydrogels (FRESH v2.0) and successfully demonstrated 3D bioprinting of organ-scale human heart with patient-specific anatomical architecture and synchronized contractions of cardiac ventricles containing human embryonic stem-cell-derived cardiomyocytes (Figure 11F). Alternatively, bioprinting tissue beads and organ-specific dECM hydrogels could represent other rapidly expanding parallel strategies attempting to harness the complex material composition of native tissues that could play a role in orchestrating their biospecific functions.[398,411] Due to their viscoelastic characteristics, such bioinks could also benefit from improved shear thinning properties, which are known to play a role in maintaining cell integrity during the bioprinting process.[412] Hydrogels with self-healing behavior (e.g., host–guest interactions) can also function as supporting baths for accommodating extruded bioinks.[413] Although hydrogel viscoelasticity has proven to be beneficial in influencing cell behavior (e.g., proliferation, spreading, differentiation, and bioactivity) due to mechanical similarities with ECM, they can be associated with lower mechanical stiffness which may difficult the bioprinting of large scale structures.[414] In this context, bioinks can be mechanically reinforced by intercalating deposition of melted robust biomaterials (i.e., PCL) facilitating bioprinting of voluminous tissues with enhanced structural integrity and without compromising cell viability.[415,416] Other approaches comprise biocompatible benzimidazole-based biomolecule that can accelerate exchange dynamics of hydrazone crosslinking in hyaluronic acid-based hydrogels, which can be exploited for designing self-gelling bioinks with improved stability.[417]
通过瞬时支持生物墨水(即海藻酸盐)。[409]或者,在一种创新的方法中,研究人员已经证明了自组装肽的潜力,用于生物打印各种ECM蛋白质和生物分子(即纤维连接蛋白、胶原、角蛋白、弹性蛋白样蛋白、透明质酸等)。具有很高的细胞活力,因此可以作为一个多功能工具箱,提供可调的生物墨水成分和结构控制。[410]由于胶原蛋白在中性pH下自组装,胶原生物墨水可以很容易地通过简单的pH调节进行生物打印。有趣的是,研究人员最近将这一原理与第二代自由形式的悬浮水凝胶可逆嵌入(Fresh v2.0)相结合,成功地展示了器官规模的人体心脏具有患者特定的解剖结构的3D生物打印,以及包含人类胚胎干细胞来源的心肌细胞的心脏的同步收缩(图11F)。或者,生物打印组织珠和特定器官的dECM水凝胶可以代表其他快速扩展的并行策略,这些策略试图利用天然组织的复杂材料组成来协调其生物特异性功能。[398,411]由于其粘弹性特性,这种生物墨水还可以受益于改善的剪切稀释性,这是已知的在生物打印过程中保持细胞完整性的作用。具有自我修复行为(例如,主-客体相互作用)的水凝胶也可以用作支持浴缸来容纳挤出的生物墨水。[413]尽管水凝胶粘弹性已被证明在影响细胞行为(例如,增殖、扩散、扩散)方面是有益的。[414]在这种情况下,生物墨水可以通过插入沉积融化的坚固生物材料(即PCL)来机械地增强,从而促进大量组织的生物打印,从而增强结构完整性,而不会影响细胞的生存能力。[415,416]其他方法包括生物兼容的苯并咪唑生物分子,它可以加速透明质酸水凝胶中Hydrazone交联的交换动力学,这可以被用于设计具有改进稳定性的自凝胶型生物墨水。
 
Although still in its infancy, 4D bioprinting attempts are also beginning to emerge in bottom-up tissue engineering approaches, motivated by establishment of shape-shifting polymers and advent of actuating constructs.[418] Recent reports focused on the development of shape-morphing bioinks comprising methacrylated alginate/hyaluronic acid biopolymers and mouse bone marrow stromal cells, which could self-fold under aqueous conditions from sheet-based configuration into hollow tubes.[419] Such swelling-driven capillary assemblies displayed small internal diameters (>20 µm) and are thus more similar to smaller blood vessels, which are currently unattained by typical bioprinting techniques. Recently, 4D bioprinting of alginate/GelMA-based bioinks patterned with alginate/polydopamine inks, were used to generate 3D cellladen constructs with programmed shape-morphing features via NIR light-triggered local deswelling of the hydrogel.[420] On the same context these approaches can be further improved since, stereolithography-based grayscale digital light processing is now emerging as an enabling tool for manufacturing functionally graded materials with location-specific properties. This could allow 4D bioprinting of constructs with programmable buckling/deformation sequences.[421] Multiphoton technology is also capable of eliciting topographical changes in protein-based hydrogels via inner contraction of the structural network, thus allowing manipulation of cell microenvironment in 4D, but is still constrained by complex operation conditions and slow patterning rate.[422,433] Recent studies are also starting to modulate the mechanical properties of bioprinted constructs and the impact of cell-generated forces in the maturation of multicellular structures.[423] With increased understanding of tissue developmental processes, cells can potentially serve as sophisticated bioactuators in bioprinting, where cell-driven microtissue contraction/compaction effects can be leveraged for increasing the effective spatial resolution of bioprinted construct features or implementing programmable structural design motifs with living cells as the driving force.[424] Alternatively, 4D biomolecule-driven microtissue maturation could be explored on the emerging research subfield of prokaryotic bioprinting. Microgels encapsulating bioengineered bacteria can serve as autonomous biofactories that can potentially be bioprinted and continuously provide 4D biochemical cue presentation (e.g., rhBMP-2) to neighboring human cells along time.[42
 
虽然仍处于起步阶段,但 4D 生物打印尝试也开始出现在自下而上的组织工程方法中,其动机是建立变形聚合物和驱动结构的出现。 [418]最近的报告集中在开发包含甲基丙烯酸化海藻酸盐/透明质酸生物聚合物和小鼠骨髓基质细胞的变形生物墨水,它们可以在水性条件下从基于片材的配置自我折叠成空心管。 [419]这种肿胀驱动的毛细管组件显示出较小的内径(> 20 µm),因此更类似于较小的血管,目前典型的生物打印技术无法实现。最近,藻酸盐/聚多巴胺油墨图案化的藻酸盐/GelMA 生物油墨的 4D 生物打印被用于通过 NIR 光触发的水凝胶局部消溶胀生成具有程序形状变形特征的 3D 细胞结构。 [420]在相同的背景下,这些方法可以被进一步改进,因为基于立体光刻的灰度数字光处理现在正在成为制造具有位置特定属性的功能梯度材料的使能工具。这可以实现具有可编程弯曲/变形序列的结构的4D生物打印。[421]多光子技术还能够通过结构网络的内部收缩在基于蛋白质的水凝胶中引起地形变化,从而允许在4D中操纵细胞微环境,但仍然受到复杂的操作条件和缓慢的图案化速度的限制。[422,433]最近的研究也开始调节生物打印结构的机械性能和细胞生成的力量在多细胞结构成熟中的影响。[423]随着对组织发育过程的深入了解,细胞可能在生物打印中作为复杂的生物致动器,其中,细胞驱动的微组织收缩/致密效应可用于提高生物打印结构特征的有效空间分辨率或实现以活细胞为驱动力的可编程结构设计主题。或者,4D生物分子驱动的微组织成熟可在原核生物打印这一新兴的研究分支上进行探索。包裹生物工程菌的微凝胶可以作为自主的生物工厂,潜在地可以被生物打印,并随着时间的推移不断地向邻近的人类细胞提供4D生化提示(例如,重组人骨形态发生蛋白-2)。

4. Combined Multicomponent-Multiscale Bioarchitectures(多组分-多尺度组合生物建筑)

The combination of cell-rich/cell–biomaterial constructs into multiscale organotypic assemblies (i.e., from nano to macrolevel) arises as the most challenging, but conceivably, the most promising approach for better recapitulating native tissues structure, connective organization and physiology in 3D macroconstructs. Apart from improving biofunctionality and biomimicry, the bottom-up combination of multiblock 3D assemblies into higher order multiscale architectures with biospecific designs is envisioned to provide a seamless biointegration into host tissues upon constructs implantation (Figure 1). After this stage, obtaining a self-regulated response to local/systemic biomacromolecular cues is key for assuring 3D microtissues commitment toward tissue-specific functions. Unsurprisingly, mimicking human tissues bioarchitecture while assuring microenvironment-sensing and physiological response in implantable multiscale assemblies is remarkably complex.
将富含细胞/细胞-生物材料的结构组合成多尺度的有机组合(即从纳米到宏观水平)是最具挑战性的,但可以想象的是,在3D大结构中更好地概括天然组织结构、结缔组织和生理的最有前途的方法。除了改进生物功能和仿生学之外,多块3D组件的自下而上组合成具有生物特异性设计的更高阶多尺度架构的设想是在构建物植入后提供与宿主组织的无缝生物整合(图1)。在此阶段之后,获得对局部/系统生物大分子提示的自我调节反应是确保3D微组织对组织特定功能的承诺的关键。不出所料,在可植入的多尺度组件中模拟人体组织生物结构,同时确保微环境感知和生理响应是非常复杂的。
 
An elegant approach that involves the deconstruction of nature into its fundamental building blocks (i.e., cells/materials/soluble factors) as means to manipulate each component and encode action/response biofeedback networks has been recognized as a valuable reductionistic alternative to fabricate multiscale macrotissues with better biofunctionality and higher translational potential
一种优雅的方法涉及将自然解构为其基本构件(即细胞/材料/可溶性因子),作为操纵每个组件并编码动作/反应生物反馈网络的手段,已被认为是制造具有更好生物功能和更高翻译潜力的多尺度宏观组织的一种有价值的还原替代方案
 
Gathering on these fundaments researchers used advanced 3D biofabrication technologies to fabricate large scale constructs with a multicomponent, multiscale bone bioarchitecture incorporating osteoinductive silica nanoplatelets within constructs. This was essential for promoting osteodifferentiation of hMSCs.[426] In this work, VEGF-functionalized GelMA cell-laden cylinders were stacked in a pyramidal construction (comprising 28 rods), ultimately obtaining a perfusable lumen with HUVECs and pericytes, surrounded by differentiated osteoblasts.
在这些基础上,研究人员使用先进的3D生物制造技术来制造大规模的结构,这种结构具有多组分、多比例的骨生物结构,在结构中加入了骨诱导二氧化硅纳米片。这对于促进hMSCs的成骨分化至关重要。[426]在这项工作中,将血管内皮生长因子功能化的GelMA细胞装载的圆柱体堆叠成金字塔结构(由28根棒状结构组成),最终获得一个可灌流的管腔,管腔内有HUVEC和周细胞,周围是分化的成骨细胞。
 
Also inspired by these concepts researchers generated compartmentalized multilayered micro/macrocapsules as hierarchic, self-regulated 3D living systems that support stem cells differentiation toward osteogenic or chondrogenic lineages depending on core/surrounding microenvironment cues and cell/biomaterial combinations.[427,428] This hierarchically structured and compartmentalized system is composed of PLLA microparticle–cell building blocks encapsulated in permselective liquefied microenvironments that assure gas/ nutrients/waste exchange and sustain enclosed 3D micro tissues viability during prolonged periods in vitro and in vivo.[427] In a similar line, the development of vascularized hierarchic microtissue assemblies based on cell confinement in ECM mimetic environments has also been recently described.[428] Such approach involved a highly controlled fabrication of cell laden alginate-collagen microcapsules in microfluidic chips, followed by their random impregnation into a hydrogel shell. The hierarchically assembled construct was then employed as a template for build-up and maturation of stromal cells and endothelial cells into primitive vascular networks.[429] Despite focusing on cancer cells and the establishment of a close-to-native tumor microenvironment, the underlying concept of this multicomponent platform can be translated for bottom-up tissue engineering and regenerative medicine applications. Nevertheless, the build-up of such 3D multicomponents was highly random and no control over vascular networks spatial distribution was obtained. Such is paramount when considering the effects of 3D engineered constructs vascularization in the overall outcome after implantation.
同样受到这些概念的启发,研究人员产生了分区的多层微囊/大胶囊,作为分级的、自我调节的3D生命系统,支持干细胞根据核心/周围微环境线索和细胞/生物材料组合向成骨或软骨血统分化。[427,428]这个分级结构和分区的系统由封装在渗透选择性液化微环境中的PLLA微粒子-细胞构建块组成,确保气体/营养物质/废物交换并在体外和体内长期维持封闭的3D微组织的活性。最近还描述了在模拟ECM的环境中基于细胞限制的血管层次化微组织组件的发展。这种方法包括在微流控芯片中高度受控地制造细胞负载的海藻酸盐-胶原微囊,然后将其随机浸入水凝胶外壳。然后,这种分层组装的结构被用作建立和成熟基质细胞和内皮细胞形成原始血管网络的模板。[429]尽管专注于癌细胞和建立接近自然的肿瘤微环境,但这个多组分平台的基本概念可以转化为自下而上的组织工程和再生医学应用。然而,这种3D多成分的建立是高度随机的,并且无法控制血管网络的空间分布。考虑到3D工程化支架的血运重建对植入后的整体结果的影响,这是最重要的。
 
To overcome this inherent unpredictability, researchers are investigating precision chemistry approaches and biofabrication techniques that unlock the possibility to direct bottomup assembly of multicomponent, multiscale microtissues. In this sense, by using modular cell–biomaterial bioink combinations researchers have successfully bioprinted multiscale constructs with decoupled micro- and microenvironments and multiscale bioarchitectures.
为了克服这种固有的不可预测性,研究人员正在研究精密化学方法和生物制造技术,以开启直接自下而上组装多组分、多尺度微组织的可能性。在这个意义上,通过使用模块化细胞-生物材料生物墨水组合,研究人员成功地生物打印出具有分离的微和微环境以及多尺度生物结构的多尺度结构。
 
Overall, combining distinct assembly mechanisms (i.e., self-assembly, guided assembly, direct assembly, etc.) and synchronizing them toward the development of spatially coded complex bioarchitectures, will be essential for manufacturing living multicomponent modules across several length scales.[10] The emerging tools for engineering heterogenous assemblies with high precision and biofunctionality at cellular and biomaterial scale are now more established than ever, hence their interface with pioneering assembly technologies that can manipulate such building blocks could collectively accelerate the design from micro- to macroscale living 3D constructs. In this process bioengineers will be challenged with design tradeoffs by having to assure the fabrication of biologically relevant modules while keeping production cost and scalability at reach
总体而言,结合了不同的组装机制(即自组装、引导组装、直接组装等)。并将它们同步到空间编码的复杂生物结构的开发,这将是制造几个长度尺度的活的多组件模块的关键。[10]用于在细胞和生物材料尺度上设计具有高精度和生物功能的异质组件的新兴工具现在比以往任何时候都更加成熟,因此它们与可以操纵这种构建块的开创性组装技术的接口可以共同加速从微观到宏观规模的活3D结构的设计。在这一过程中,生物工程师将面临设计权衡的挑战,他们必须确保制造与生物相关的模块,同时保持生产成本和可扩展性。

5. Concluding Remarks(结束语)

In a holistic view, human organs display a robust, yet highly regulated cellular framework that combines both structural and functional properties for maintaining a living organism. Interestingly, the human body does not require a pre-existing scaffold for generating full-sized organs and mature tissues. In fact, the natural assembly of tissues into hierarchic modules is intrinsically a bottom-up process through interaction among cellular building blocks and cell-fabricated matrix throughout development, growth, homeostasis, and aging. Nature does this balance effortlessly in the human body but achieving this complexity in de novo engineered architectures remains remarkably challenging.
从整体上看,人体器官展示了一个强大而又受到高度监管的细胞框架,它结合了结构和功能特性,以维持一个活的有机体。有趣的是,人体不需要预先存在的支架来生成完整大小的器官和成熟的组织。事实上,组织的自然组装成层次化的模块本质上是一个自下而上的过程,通过细胞构建块和细胞制造的基质之间的相互作用,贯穿整个发育、生长、动态平衡和衰老。大自然毫不费力地在人体内实现了这种平衡,但在全新的工程建筑中实现这种复杂性仍然具有极大的挑战性。
The bioinspired philosophy in modular bottom-up engineering strategies provides immense design flexibility in the generation of unitary building blocks (i.e., cells and biomaterials) with tailored biochemical features, as well as specific biophysical cues which are potentiated by their interaction and combination. T o date, bottom-up engineered micro/macrotissue assemblies have proven their biomedical value and further developments are envisioned considering the constant improvement and discovery of new nano/micro assembly technologies, precision chemistry/ genetic engineering tools, 3D biofabrication approaches, as well as the increasing understanding of basic biological regeneration processes and tissues physiology.[430] We therefore anticipate an accelerated offer of bottom-up tools that allow the development of tissues or organs with higher complexity and functionalities. Such bioengineered structures may not necessarily exhibit the exact anatomical characteristics of native tissues but should possess the required physiological performance. In this sense, there is currently an analytical challenge regarding the specific biomarkers and pathways that should be characterized in engineered 3D micro/macrotissues. Fortunately, with an increasingly widespread access to the vast toolbox offered by Omics sciences (e.g., metabolomics, lipidomics, glycomics, transcriptomics, etc.) researchers will be able to better evaluate the quality of the fabricated 3D living assemblies and their maturation during in vitro culture and evolution postimplantation in vivo. The latter can also be complemented with the noninvasive follow up of implanted 3D constructs via sophisticated in vivo bioimaging probes. Still, regarding in vivo implantation, a significant effort has been put toward improving living 3D modular constructs biointegration into surrounding host tissues by controlling/stimulating angiogenesis with the inclusion of morphogens or mechanical cues.[431] This remains one of the most challenging aspects of bottom-up tissue engineering but with the advent of sophisticated volumetric light-based 3D biofabrication-based approaches for generating flow-functional multivascular networks,[401] we anticipate that the ex vivo development of functional prevascularized modular tissue constructs will improve in the upcoming years. The scalability and speed of 3D bioprocessing techniques have been recently improved with elegant approaches for rapid printing of anatomically sized living architectures.[432] Nonetheless, minimizing complexity while pursuing optimal microtissue biofunctionality and physiological responsiveness to its surrounding microenvironment will be critical for pushing more realistic bottom-up assembled constructs toward preclinical applications.
模块化自下而上工程策略中的生物启发哲学提供了巨大的设计灵活性,可以生成具有量身定制的生化特征的单一构建块(即细胞和生物材料),以及通过它们的相互作用和组合而增强的特定生物物理线索。到目前为止,自下而上的工程化微/大组织组装已经证明了它们的生物医学价值,并展望了进一步的发展,考虑到新的纳米/微组装技术、精密化学/基因工程工具、3D生物制造方法的不断改进和发现,以及对基本生物再生过程和组织生理学的日益了解。因此,我们预计自下而上工具的提供将加速,允许开发具有更高复杂性和功能的组织或器官。这种生物工程结构可能不一定表现出天然组织的确切解剖学特征,但应该具有所需的生理性能。从这个意义上说,目前在工程化的3D微/宏观组织中,存在着关于特定生物标志物和途径的分析挑战。幸运的是,随着Omics科学(如代谢组学、脂类组学、糖组学、转录组学等)提供的巨大工具箱的使用日益广泛,研究人员将能够更好地评估制作的3D生物组件的质量及其在体外培养和体内移植后的进化过程中的成熟度。后者还可以通过复杂的活体生物成像探针对植入的3D结构进行非侵入性随访。尽管如此,在体内植入方面,已经付出了大量的努力来改善活的3D模块构建物与周围宿主组织的生物整合,方法是通过包含形态因子或机械线索来控制/刺激血管生成。[431]这仍然是自下而上组织工程最具挑战性的方面之一,但随着复杂的基于体积光的3D生物加工方法的出现,用于生成流动功能性多血管网络的方法的出现,[401]我们预计,在未来几年内,功能预血运化模块化组织构建物的体外开发将有所改善。最近,3D生物处理技术的可伸缩性和速度得到了提高,可以快速打印出解剖大小的活体建筑。[432]然而,在追求最优的微组织生物功能和对周围微环境的生理响应的同时,最大限度地减少复杂性将是推动更现实的自下而上的组装结构走向临床前应用的关键。
 
badge